特別講演1

脳結核の画像—呼吸器画像の基本—

伊藤 春苗（福井大学高エネルギー医学研究センター）

1. 脳の画像診断技術
【新型HRTCT誕生】

脳HRTCTの誕生は1980年台前半である。これまで脳部断層像と通常断層写真が主流であった。胸部CTは、頭部CTより遅れて使われたが、画像の層厚から、脳解剖に利用する意義については、多くの臨床医が懐疑的であった。それを破壊したのが、頭部検査に開発された高解像度の新しいCT技術である。それは、骨と空気という密度差の大いき鑑別を生かしたものである。我々は、頭部断面に高解像度の大いき鑑別が可能であることが、臨床研究を開始した。脳HRTCTは、当時、我国の呼吸器科医の深い関心を惹いた。大きな成果を挙げた疾患は、脳結核、サルコイドーシス、びまん性肺結核、肺結核を持つ慢性肺結核症等の通常疾患である。それまでの脳部X線写真による読影技術の体系が、世界の広がりの中で変わった。

【ディジタルX線像の開発と進歩】

脳HRTCT同様、アナログ胸部写真からディジタル胸部X線像への変革も重要である。新X線検査器であるC-armでFPD(フラットパネルディテクター)が開発され、それに適切な画像処理技術を加えることにより、脳野から骨形胸部に至る密度差の大いき胸部の各構造を描出面が向上し、観察ポイントになり易い脳野の範囲が拡大した。この特性は、脳野の部位にて病巣検出の有無、脳結核や脳腫瘍の検出がアナログ胸部写真時代より向上することを意味する。

2. 脳結核の画像診断学小史

我々が国における脳結核の画像診断学の基本コンセプトは、Radiologic-Anatomic-Pathologic Correlation (RAP-C)である。この考え方の一部は、我々が文献として参考する1940年台にある。そこでは、胸部X線写真、肺標本スライスX線像、同側肺断、組織像などが、互いに関連を持たせつつ提示された（図）眼視、放射線診断の原点とも言える内容であり、特に標本X線像とその側面断面診断的強さは現在でも失われていない。その後、同様の考えで、胸野標本の観察を中心に視した、区域解剖学の進化（山下）、脳肺評価診断学の開発（塩本）が生まれた。当時の、脳解剖の画像診断は、「先ず脳結核の危険から始めよ」の言葉は現在でも生きている。

演者(伊藤)は、1970年台半ばから、先述の影響を受けつつ、剖検肺を材料としてRAP-Cを開始した。脳結核の画像診断はHeitzmanの著書に載っても、標本の解剖学化法が全くの改良し、線維性肺結核の実体解剖観察を含む小委員会を設けた。この方法で以下の内容を明らかにした。1）気管支、細気管支支脈の機能（左順&右順）、2）肺小葉の正常細気管支、3）小葉中心部近傍に病巣を形成する疾患である、脳結核、小葉性肺膿瘍、肺結核、肋膜炎。4）気管支胸膜肺炎と肺静脈・肺動脈に付随して進展する、癌性リンパ腺腫、悪性リンパ腫、肺結核。5）肺動脈を充填する肺動脈・肺癌結、肺腫瘍。6）感染性肺出血症で示される肺癌結。これらは後で脳HRTCTの診断にスムーズ応用できた。

脳結核の肺検査器は、1）気管支・細気管支病変。2）小葉中心性空洞病変と初期空洞、3）肺野を含んで発育する小葉性一多小葉性病変、4）固態結核病の小葉結核、5）肺病変部位細気管支の充血病変等の、気道から肺野領域を侵す疾患の特徴が明らかにされた。特に肺結核の微細病変が、周辺の正常肺に対して持ちコントラストの高い所は、軽X線検査と実体顯微鏡観察で明らかであり、細、脳の外形が互いにHAP-Cの精度を高きを退揺できた。

3. 脳結核の画像診断上の留意点

脳結核の画像診断は肺結核同様、胸部X線像の読影から始まる。結核性病変は、コントラストが高いので、原則的に胸部X線検査で描出しやすい。特に、繰り返し発症する肺結核病変は肺血管の見え方に影響するので、肺血管の読影の気を配ることが重要である。脳の血管性病変が重複した場合は、読影上の対応に注意する。S-3領域の観察には肺野の病変の有無を考慮する。

脳結核には、気管支HRTCTを用いる。脳部X線像では認識し難しい病変の発見と共に、診断診療目的に用いる。脳結核に特徴的な微細病変の他に、小葉性その他の大気管枝末梢領域に注目する。脳結核は、肺気道および肺組織を含む肺野の病変を示す。本講演を聴いた皆さんの皆様が、肺結核画像診断を含む、肺病変画像診断の進歩を理解し、理解を深めることが目的である。
結核治療は抗結核薬によって行われるが、イソニアジンとリフアンシンに耐性の多剤耐性結核は、難治の結核の核となる症例であった。最近30年間の結核の変化としては、1. 日本国内での多剤耐性結核の発生、結核の発生の減少とは同じスピードで減少してきている。2. 結核薬剤によっては耐性結核の頻度が日本より高い。これらの国からの入国して滞在する者の結核発病者数は1990年代後半においてが最近従来傾向にあり、今後の多剤耐性結核対策を考えるうえで新規入国者への対策を考慮しなければならない。3. 5年以内に発症する発症者は、報告されている薬として新薬を含めて耐性結核を処置する薬として、耐性薬を含めて耐性結核の事例を含め、2015年版にMIRAやVREに対する抗結核薬であるリソロールが多剤耐性結核の有効であるかを発症されるようになっていた。}


日本では、1980年代後半の米国のAIDSの流行とともに結核、特にW株による耐性結核の流行があり、以前からの難治の結核症という表現があった。1990年代初めイソニアジンとリフアンシン耐性の結核を多剤耐性結核と表現して米国では多剤耐性結核対策が強化されるようになった。米国における多剤耐性結核の拡大は1990年代の間に落ち着くこととなるが、その一方で、1990年代後半、単一の死亡原因病気としては結核菌が世界で最も多くの人の死亡原因となっていることが明らかとなった。結核対策がdisability adjusted life years (DALY) といった、quality adjusted life years (QALY) とよく用いられるの損失回復提案で使用されることが要されます。しかし、1990年代後半から薬耐性感受性検査の標準化および進上国における耐性薬の薬の検査が進めていき、新薬に対する対策を進めることが必要である。初期、二次薬に対する薬の検査の発見から多剤耐性結核のハイリスク群である非治療者や薬剤耐性結核症に対する薬剤、およびイソニアジンとリフアンシンの薬の発見で診断し、標準化5-6薬治療(ビラジニミド、リポフォスファシン、カナマイシン、エチオナミド、サイクリシンを核とする)が行われたが、2010年版にMIRAの薬の薬を薬で、2010年版にvan Deinserによる、ガチフロキシン、カナマイシン、ビラジニミド、エチオナミド、エチオナミド、クロラジニン、クロラジニン、クロラジニンを用いた9薬治療による80%以上の治療成功率の報告を含む、最近では、ニューキノロン、アミノグリコシドなどの薬の発見で9薬治療が世界的にに行われるようになりつつある。日本での多剤耐性結核治療が世界の先進国ではなく世界全体の標準より遅れつつあるのか、あるいは、治療が一方では見られていらない。その一方で、新薬およびリソロールの不適切な使用を伴う、新薬、リソロール耐性薬が世界的には増えつつある。今後、薬剤による耐性化した多剤耐性結核症の対策を考えると、これらの症例への薬剤、リソロールの薬の発見を薬の発見を基準に臨床対応も必要とされる。