結核病床をもたない一般病院環境における 職員の結核菌曝露リスク

インターフェロンγ遊離試験陽性率を用いた検証

 1阿部 達也
 7橋本 貴尚
 2小林 隆夫
 3人見 秀昭

 2海老名雅仁
 4藤盛 寿一
 5阿見 由梨
 6早川 幸子

 8藤村 茂

要旨: [目的] 病院職員に対する結核曝露のリスクを、インターフェロン γ 遊離試験(IGRA)の陽性率を指標として後ろ向きに比較した。その際、「病院環境曝露」を結核曝露のリスクとして仮定した。 [対象] 2010年12月から2012年4月の間にIGRAを行った職員870人を、病院環境曝露の有無により以下の群に分けて解析した。非曝露群は雇用時に測定を行った新入職者161人、曝露群は接触者健診受診者を含む既職者709人であった。 [方法] IGRA はクォンティフェロンTB ゴールド®3G を用い、非曝露群を対照として、曝露群における陽性オッズ比(OR)をロジスティック回帰分析で求めた。 [結果] 全体として陽性率は6.7%で、2 群間の陽性率(1.9% vs 7.8%)には有意差を認めた(P=0.005)。 さらに、非曝露群を対照とし、性別、勤続年数、喫煙歴、および飲酒歴で調整した曝露群の陽性 OR(95%信頼区間)は4.1(1.4-17.6)(P=0.007)であった。 [結論] 病院の職場環境への曝露はその年数にかかわらず結核感染の潜在的なリスクとなっている可能性が示唆された。

キーワーズ: 結核, 院内感染, 接触者健康診断, インターフェロンγ遊離試験, クォンティフェロン

緒 言

医療従事者の中で、看護師の結核罹患率と相対危険度は高く¹⁾、臨床検査技師の結核発病リスクは高い傾向を示すことが報告されている^{2)~6)}。その主な理由として、職業上エアロゾルを発生させる業務中の患者や患者検体への濃厚接触が挙げられ⁷⁾、病院環境での結核菌への曝露(以下、「病院環境曝露」または「曝露」と略す)のリスクが示唆されている。

インターフェロンγ遊離試験(interferon-gamma release assay: IGRA)は潜在性結核感染症(latent tuberculosis infection: LTBI)を含めた結核感染の診断法として感度と特異度が優れており⁸⁾,結核の院内感染対策の有力な手段とされている⁹⁾。とくに結核の接触者健康診断(接触者健診)ではベースラインの測定値が既知であればLTBIの診断の感度と特異度が向上し、その早期発見と早期治

療に資するところが大きい。

当院では2010年に栗粒結核患者から医療従事者への院内感染を経験し、それを機に院内感染対策の一環として病院全職員のベースラインのIGRAをクォンティフェロンTBゴールド®3G(QFT、日本ビーシージー製造株式会社)を用いて行った。また、以後の新入職者も全員雇い入れ時にIGRAを行った。今回これらの結果について後ろ向きの解析を実施し、新入職者群(病院環境非曝露群)に対する継続勤務者群(ベースライン群並びに接触者健診群:病院環境曝露群)のIGRA陽性率を比較し、自施設の職員の病院環境への曝露が結核感染のリスク因子となっていたかどうかについて検討した。さらに、対象者の職種と勤続年数がこのリスク因子に与える影響を検討した。

東北薬科大学病院¹中央検査部, ²呼吸器内科, ³総合診療科, ⁴神 経内科, ⁵感染管理対策室, ⁶薬剤部, ⁷仙台オーブン病院薬剤部, ⁸東北薬科大学臨床感染症学教室 連絡先:阿部達也,東北薬科大学病院中央検査部,〒983-8512 宮城県仙台市宮城野区福室1-12-1

(E-mail: abetatsu@hosp.tohoku-pharm.ac.jp) (Received 23 May 2015/Accepted 3 Jul. 2015)

方 法

対象者は2010年12月から2012年4月の間,東北薬科大学病院(旧東北厚生年金病院)の職員で雇い入れ時健診(新入職者群),ベースライン測定(ベースライン群),および接触者健診(接触者健診群)でIGRAを行った延べ870人とした(Table 1)。この期間中,当院で結核と診断された患者は7名で,そのすべての症例についてIGRAを含めた接触者健診が行われた。ベースライン群582人のIGRAは2011年2月に一斉に施行し,その対象はそれまでの接触者健診でIGRAを受けたことのある者を除く全職員とした。新入職者は,職種・所属部署にかかわらず「新入職者群」とした。接触者健診の対象者は,提唱された方法10にしたがって院内のインフェクションコントロールチームが決定した。接触者健診でのIGRAの採血は接触後2カ月から3カ月の間に行った。

IGRAにはQFTを用い、判定は仕様書にしたがった。主要評価項目は、新入職者群(非曝露群)を対照とした場合のベースライン群と接触者健診群(曝露群)のIGRAが陽性となる調整オッズ比(OR)とした。この際、調整因子として「喫煙歴の有無」「飲酒歴の有無」「性別」および「勤続年数(1年増加ごと)」を採用した。副次的評価項目は、①職種別のIGRA陽性ORの検討、および、②「曝露群」を勤続年数によって均等3分割した場合の、各年数群のIGRA陽性OR(IGRA陽性者が存在する10職種、詳細は後述)とした。

統計解析にはJMP10.0.0(SAS Institute Inc., USA)を使用し、P値0.05未満を統計学的な有意とした。非曝露群・曝露群間のIGRA陽性率の比較はカイ二乗法を用いて検討を行った。IGRA陽性の調整ORはロジスティック回帰分析(調整因子として「喫煙歴の有無」「飲酒歴の有

無」および「性別」を含めたモデル 1 と、モデル 1 にさらに「勤続年数」を含めたモデル 2 の 2 種で検討)を用いて求めた。断りのないかぎり、それぞれの OR には信頼区間(CI)と P 値を併記し、[OR(CI)、P 値」のように表記した。

QFTの検査費用、および接触者健診の費用は病院が負担した。

この研究は職員のIGRAの結果を後ろ向きに解析する 臨床研究として東北薬科大学病院の倫理委員会の承認を 得ている(2013年2月13日付)。

結 果

Table 1 に対象者基礎特性を示す。新入職者群、ベースライン群、および接触者健診群の間で性別、喫煙者数、および飲酒者数の比率に有意の差は認めなかったが、新入職者群は新卒者を多く含むため年齢と勤続年数で有意差を認めた(いずれもP < 0.0001)(Table 1)。新入職者群、ベースライン群、および接触者健診群のIGRA 陽性率はそれぞれ1.9%, 8.2%, および5.5%で、3 群間に有意差を認めた(P = 0.01)(Table 1)。

次いで各調整因子を導入した 2 種のロジスティック回帰モデルにおいて、新入職者群を対照とした場合のベースライン群と接触者健診群での IGRA 陽性 OR を求めた (Table 2)。その結果、ベースライン群では新入職者群と比較して IGRA 陽性の OR が有意に高く [5.0 (1.8–20.8)、P=0.0009] (モデル1)、その有意性は「勤続年数」を追加したモデル 2 においても持続した [4.4 (1.5–18.6)、P=0.005] (Table 2)。一方、接触者健診群では両モデルにおいて IGRA 陽性 OR は高値を示す傾向にあったが、有意ではなかった:モデル1 [3.5 (0.9–16.3)、P=0.06]、モデル2 [3.0 (0.8–14.6)、P=0.1] (Table 2)。

 Table 1
 Baseline characteristics according to IGRA for hospital workers (new employees, baseline, and contact examination)

	Groups				
Characteristics	Total (N=870)	New employees (N=161)	Baseline assay (N=582)	Contact examination (N=127)	P value
Age (years) [18-74 years]	35±11	26.8 ± 6.7	37.0±11.2	36.1±9.2	< 0.0001
Gender (male) (%)	25.3	28.0	26.3	17.3	0.08
Smoking history (%) (N=802)	11.6	8.7	12.6	10.9	0.4
Alcohol intake (%) (N=802)	67.5	71.3	67.4	63.0	0.4
Years of employment (years) [1-44 years]	8.8 ± 9.3	1.0 ± 0.5	10.5 ± 9.6	10.7 ± 8.8	< 0.0001
IGRA					
Positive [N (%)]	58 (6.7)	3 (1.9)	48 (8.2)	7 (5.5)	0.01
Negative [N (%)]	664 (76.3)	148 (91.9)	420 (72.2)	96 (75.6)	
Suspended [N (%)]	145 (16.7)	10 (6.2)	113 (19.4)	22 (17.3)	
Failure [N (%)]	3 (0.3)	0 (0)	1 (0.2)	2 (1.6)	

Values are expressed as mean \pm standard deviation or percentage. P values were calculated using analysis of variance (ANOVA) for continuous variables or chi-square test for categorical variables.

IGRA: interferon-gamma release assay, N: subject number

また、ベースライン群と接触者健診群をまとめて「病院環境曝露群」とした場合ではIGRA 陽性 OR は各種調整因子とは独立して有意に高い OR が得られた:モデル1 [4.7 (1.7–19.7), P=0.001], モデル2 [4.1 (1.4–17.6), P=0.007] (Table 2)。各種調整因子と IGRA 陽性 OR との関連については、喫煙歴、飲酒歴、および勤続年数の増加(1年ごと)のいずれの因子も有意な関連を認めなかったが、男性は女性に比べ IGRA 陽性 OR が有意に高かった(Table 2)。

病院職員の職種別のIGRA陽性率をTable 3に示す。 IGRAの陽性者は,新入職者と次に示す9職種だった: 臨床検査技師,医師,看護師,診療放射線技師,薬剤師, 看護補助員,調理師,調理補助員,および事務員。この IGRA 陽性を示した職員を対象に,前記 2 つのモデルによる IGRA 陽性 OR を検討した (Table 4)。その結果,2 つのモデルのいずれにおいても新入職者との比較で 3 職種 (臨床検査技師,医師,および看護師)の新入職者群に対する IGRA 陽性 OR が有意に高値を示した。モデル2 でのそれぞれの結果:[13.2 (3.0-69.7), P=0.0006],[4.7 (1.4-22.1), P=0.01],および[3.9 (1.2-17.6), P=0.02] (Table 4)。

Table 2ではモデル2で追加した調整因子「勤続年数(1年増えるごと)」はIGRA陽性ORの上昇に影響を与えない可能性が示唆されたが、病院環境曝露群(ベースライン群並びに接触者健診群)を勤続年数(分布は1年~44年)で均等3分割(3.7年未満,3.7~13.9年,13.9年)

Table 2 Adjusted odds ratios for IGRA positivity between the new employees (reference) and each group of hospital workers

Variables	Model 1		Model 2		
variables	OR (95% CI)	P	OR (95% CI)	P	
New employees	1 [Ref]		1 [Ref]		
─ Baseline assay	5.0 (1.8-20.8)	0.0009	4.4 (1.5-18.6)	0.005	
Contact examination	3.5 (0.9-16.3)	0.06	3.0 (0.8-14.6)	0.1	
→ Baseline assay + Contact examination ("Post-employment" group)	4.7 (1.7–19.7)	0.001	4.1 (1.4-17.6)	0.007	
Smoking history	0.5 (0.1-7.5)	0.1	0.5 (0.1-1.2)	0.1	
Alcohol intake	$0.9 \ (0.5-1.7)$	0.8	$0.9 \ (0.5-1.6)$	0.8	
Gender (male)	2.3 (1.3-4.0)	0.006	2.3 (1.3-3.9)	0.006	
Years of employment (1-year increase)	N/A	N/A	1.0 (0.99-1.04)	0.3	

Model 1 includes variables of smoking history, alcohol intake and gender (male).

Model 2 includes variables in Model 1 plus years of employment (1 year increase).

OR: odds ratio, CI: confidence interval, Ref: reference, N/A: not applicable

Table 3 Stratified analyses of IGRA among the professions of the hospital workers

Profession	N	Result of IGRA				
Profession		Positive (%)	Suspended (%)	Negative (%)	Failure (%)	
New employees	161	1.9	6.2	91.9	0	
Laboratory technicians	30	23.3	3.3	73.3	0	
Doctors	96	12.5	20.8	66.7	0	
Nurses	391	6.4	18.2	74.7	0.8	
Radiology technicians	18	11.1	11.1	77.8	0	
Pharmacists	18	11.1	11.1	77.8	0	
Assistant nurses	22	9.1	45.5	45.5	0	
Cooks	11	9.1	0	90.9	0	
Assistant cooks	15	6.7	20	73.3	0	
Medical clerks	55	5.5	21.8	72.7	0	
Physical therapists	15	0	26.7	73.3	0	
Occupational therapists	10	0	40	60	0	
Dietitians	7	0	0	100	0	
Clinical engineers	6	0	16.7	83.3	0	
Speech therapists	4	0	50	50	0	
Boiler engineers	2	0	0	100	0	
Orthoptists	2	0	50	50	0	
Dental hygienists	2	0	50	50	0	
Associate nurses	2	0	0	100	0	
Dental technician	1	0	0	100	0	
Driver	1	0	100	0	0	
Clinical psychologist	1	0	0	100	0	

年以上) した場合のIGRA 陽性 OR を副次的評価項目とし て検討した (Table 5)。新入職者群を対照としてIGRAが 陽性となるORを求めた結果,いずれの群でもORが有 意に高値を示し、その3群間では違いを認めないことが 分かった: [4.3 (1.4-18.8), P=0.008], [4.8 (1.6-20.8), P=0.004], および [5.1 (1.7-22.0), P=0.002] (Table 5)。

結核罹患率の減少にともない, 結核病床が減少し, 結 核診療を専門とする, あるいは結核診療の経験のある医 療従事者が減少していることが報告されているい。その 結果、結核患者の一定の割合は、結核専門の医療施設で の専門家による診療から一般の市中病院での非専門家に よる診療に移行しつつあることが推測される。この推測 が正しければ、市中病院の医療従事者の結核感染リスク は増大傾向にあることになる。本研究では、結核院内感 染対策の一環として行われたベースラインと接触者健診 のIGRA陽性率を雇い入れ時のIGRA陽性率を対照として 後ろ向きに解析し, 市中病院で継続して勤務してきた医 療従事者の結核感染リスクを評価した。その結果、雇い 入れ時にIGRAを測定した新入職者群(病院環境非曝露 群)を対照とした継続勤務者(病院環境曝露群)のIGRA 陽性ORは有意に高いことが判明した。さらに、職種別、 および勤続年数の長さによるIGRA陽性率を検討した結 果, 臨床検査技師, 医師, および看護師においてIGRA が陽性となるORが有意に高く、また、継続勤務者では ORは勤続年数にかかわらず有意に高値を示すことが示 された。

医療従事者の結核発病リスクが高いことはこれまでに 複数報告されているが10~6, その感染リスクについては ツベルクリン反応やIGRAで評価がなされ、結核患者と 接触する機会の多い職種や結核菌が排出される医療行為 (気管内挿管や気道内吸引) で感染リスクが高く,これ らに対する感染予防策がこの感染リスクを減少させる効 果があることが示されている12~14)。しかし、これらの感 染リスクの評価は、今回われわれがリスクとして仮定し た「病院環境」にすでに曝露していると考えられる在職 者間の比較によって行われたものであり, この検証は 「病院環境」に曝露していない対照群との比較を行って いないことから結果が過小評価されている可能性が考え られる。一方、本研究は、「病院環境」に曝露していな いと考えられる集団、つまり新入職者について雇い入れ 時のIGRA陽性率を算出して対照群とし、既入職者群の ベースラインのIGRA陽性率と比較することを通じ、病 院環境曝露が結核感染のリスクとなりうるかを統計学的 に検討した初めての報告である。また,病院環境曝露そ のもののリスクに関するこれまでの報告は,一般人口集 団において推定,観測された結核感染率150やIGRA陽性 率10を対照とした病院職員 (結核病棟を有する病院) の 結核感染率, IGRA 陽性率の評価 ¹⁷⁾であったのに対し,

 Table 4
 Multivariate analyses for IGRA positivity between the new employees
 (reference) and each profession

Professions with	Model 1		Model 2		
positive IGRA	OR (95% CI)	P	OR (95% CI)	P	
New employees	1 [Ref]		1 [Ref]		
Laboratory technicians	17.5 (4.4-87.3)	< 0.0001	13.2 (3.0-69.7)	0.0006	
Doctors	5.2 (1.5-24.0)	0.007	4.7 (1.4-22.1)	0.01	
Nurses	4.7 (1.5-20.4)	0.005	3.9 (1.2-17.6)	0.02	
Radiology technicians	5.0 (0.6-33.2)	0.1	3.5 (0.4-25.4)	0.2	
Pharmacists	5.4 (0.7-35.8)	0.1	4.1 (0.5-29.1)	0.2	
Assistant nurses	6.3 (0.8-41.4)	0.08	4.8 (0.6-33.1)	0.1	
Cooks	5.7 (0.3-53.5)	0.2	4.2 (0.2-41.7)	0.3	
Assistant cooks	4.7 (0.2-41.1)	0.3	4.3 (0.2-38.1)	0.3	
Medical clerks	2.8 (0.5-15.5)	0.2	2.2 (0.4-12.7)	0.4	

Model 1 includes variables of smoking history, alcohol intake and gender (male).

Model 2 includes variables in Model 1 plus years of employment (1 year increase).

Table 5 The association of the length of employment and IGRA positivity

	Years after employment (years)	Ratio of positive IGRA	OR (95% CI)	Р
New employees	< 1.0	1.9	1 [Ref]	
Baseline assay + Contact examination ("Post-employment" group)	<3.7	7.5	4.3 (1.4-18.8)	0.008
	3.7 - 13.9	7.5	4.8 (1.6-20.8)	0.004
	13.9 ≤	8.3	5.1 (1.7-22.0)	0.002

The adjusted model includes variables of smoking history, alcohol intake and male gender.

本研究では対照を評価集団内のIGRA実測集団としてい ること, および結核病棟をもたない一般総合病院で病院 環境が潜在的に有する感染リスクの評価を行っていると いう特徴がある。報告されている一般人口集団の陽性率 (7.1%) 16 よりも測定者全員の陽性率自体が低い集団 (6.7 %) (Table 1) の中での解析だったが、ベースライン群の ORは勤続年数を含む各種調整因子とは独立して有意で あり、IGRAの陽性率が低い集団においても病院環境曝 露が結核感染のリスクとなっている可能性が示唆され た。ただし、接触者健診群単独のIGRA陽性率 (5.5%) はベースライン群単独の陽性率(8.2%)よりも低値を示 した(Table 1)。両群の平均年齢には差がないこと、お よび接触者健診群単独のIGRA陽性ORも有意ではなか った [3.0 (0.8-14.6)] (Table 2) ことから、接触者健診 群でのIGRA陽性率が低値だった理由としては、①今回 の調査期間中に接触者健診が行われた7人の結核患者か らは、職員への院内感染が少なく、かつ、②ベースライ ン群での結核既感染者の割合が接触者健診群より高かっ た可能性が推定される。なお、全体としてのIGRA陽性 率が低い理由の一つには、当院が立地する仙台市や宮城 県の結核罹患率の低さ (平成25年度は10人未満/年)18) が影響している可能性がある。また、IGRAの陽性率に 年齢差があることが報告されているが16,本研究では対 象者の平均年齢(35歳)を考慮し、また、「勤続年数」と の多重共線性 (multicollinearity) が想定されたため, OR の評価の際に年齢を調整因子には含めていない。

臨床検査技師、医師、および看護師でのIGRA陽性となるORが有意だったこと(Table 3)は、職種ごとの結核感染リスクについてのこれまでの報告を裏付けた結果と言える。また、勤続年数、すなわち職場としての病院環境への曝露時間の長さ(1年ごと)がIGRA陽性となるORに変化を与えなかったこと(Table 2)は、病院勤務者は勤務開始1年間のうちに結核感染のリスクを被ってしまう可能性を推測させる。これは結核患者を受け入れている病院の勤務者についてすでに報告されており19、勤務開始後短期間での結核感染リスクは、結核病棟のない一般総合病院でも当てはまることを示唆する。

当研究は院内感染対策の一環として職員に対して行われたIGRAのベースライン測定の結果を使用した後ろ向きの解析であり、調整因子の設定に制約があった(例:既往歴、喫煙指数、飲酒量など)。また、年齢や肥満度(BMI)など対象者の基本的特性も調整因子に含めていない。さらに、IGRA陽性の判定基準にしたがった1回の判定で結核感染の成立を前提としている。前向きの解析にはより多くの候補と推定される調整因子を設定すること、「病院環境」というリスクを有さない対照となる職場(病院以外)を設定しIGRAを入職時と勤務開始後

1年以上に測定すること、およびいずれの職場でも入職 時のIGRA陰性者を対象として解析を行うことが必要で ある。

結 語

結核病棟をもたない一般市中病院で全職員のベースラインのIGRAを実施し、その結果を後ろ向きに解析した結果、病院環境曝露は勤続年数を含む各種調節因子とは独立して結核感染のリスクとなっていることが示唆された。本知見は、勤務開始初期からの結核曝露対策、とりわけ職種に応じたきめの細かい対策の重要性を呈示しうるものである。

著者のCOI(conflicts of interest)開示:本論文発表内容に関して特になし。

文 献

- 1) 大森正子, 星野斉之, 山内祐子, 他:職場の結核の疫学 的動向一看護師の結核発病リスクの検討. 結核. 2007; 82:85-93.
- 鈴木公典,新島結花,安田順一,他:医療従事者からの 結核. 結核. 1990;65:677-679.
- 3) 鈴木公典, 小野崎郁史, 志村昭光:産業衛生の観点からみた院内感染予防対策. 結核. 1999; 74:413-420.
- 4) 宍戸真司,森 亨:わが国の院内感染予防対策の現状 と課題. 結核. 1999;74:405-411.
- 5) 井上武夫,子安春樹,服部 悟:愛知県における看護 師の結核発病. 結核. 2008;83:1-6.
- 6) 下内 昭, 廣田 理, 甲田伸一, 他: 大阪市における看護師結核患者発症状況の検討. 結核. 2007; 82:697-703.
- 7) 日本結核病学会編:医療従事者に対する対策.「結核 診療ガイドライン」,改訂第3版,南江堂,東京,2015, 115-124.
- 8) 鈴木克洋: クォンティフェロン検査の評価. 臨床と微生物. 2012; 39:117-122.
- 9) 日本結核病学会予防委員会:医療施設内結核感染対策 について. 結核. 2010;85:477-481.
- 10) 石川信克:接触者健診の実際.「感染症法に基づく結核 の接触者健康診断の手引きとその解説」, 平成22年改訂 版, 阿彦忠之, 森 亨編, 結核予防会, 東京, 2010, 27-
- 11) 賀来満夫, 渡辺 彰:日本と宮城県の結核は順調に減っている!?. 宮城県医師会報. 2014;826:874.
- 12) 築島恵理, 三觜 雄, 高瀬愛子: 肺結核患者に接触した 医療従事者のツベルクリン反応検査. 結核. 2004; 79: 381-386
- 13) 矢野修一, 小林賀奈子, 池田敏和, 他: 当院の結核ハイリスク医療従事者におけるQuantiFERON®TB-2Gの検討. 結核. 2007; 82:557-561.
- 14) 奥村昌夫, 佐藤厚子, 吉山 崇, 他: 当院職員の職場,

- 職種別に分けて比較したQFT検査の検討. 結核. 2013; 88:405-409.
- 15) 青木正和:新世紀の結核戦略―結核根絶に向けて. 結核. 2001;76:549-557.
- 16) Mori T, Harada N, Higuchi K, et al.: Waning of the specific interferon-gamma response after years of tuberculosis infection. Int J Tuberc Lung Dis. 2007; 11: 1021–1025.
- 17) Yoshiyama T, Harada N, Higuchi K, et al.: Estimation of incidence of tuberculosis infection in health-care workers

- using repeated interferon- γ assays. Epidemiol Infect. 2009 ; 137 : 1691–1698.
- 18) 厚生労働省ホームページ. http://www.mhlw.go.jp/bunya/kenkou/kekkaku-kansenshou03/13.html/ 2015年5月19日アクセス.
- 19) Yanai H, Limpakarnjanarat K, Uthaivoravit W, et al.: Risk of *Mycobacterium tuberculosis* infection and disease among health care workers, Chiang Rai, Thailand. Int J Tuberc Lung Dis. 2003; 7:36-45.

BASELINE SCREENING USING INTERFERON-GAMMA RELEASE ASSAY SUGGESTS AN INCREASED RISK OF *MYCOBACTERIUM TUBERCULOSIS* INFECTION AMONG EMPLOYEES IN A JAPANESE GENERAL HOSPITAL

¹Tatsuya ABE, ⁷Takanao HASHIMOTO, ²Takao KOBAYASHI, ³Hideaki HITOMI, ²Masahito EBINA, ⁴Juichi FUJIMORI, ⁵Yuri AMI, ⁶Sachiko HAYAKAWA, and ⁸Shigeru FUJIMURA

Abstract [Objectives] This retrospective study aimed to assess the risk of tuberculosis infection for the employees of a Japanese hospital using baseline interferon-gamma release assay (IGRA). The risk was defined as exposure to the hospital environment.

[Methods] In total, 870 hospital employees including 161 new employees, 582 for baseline assay, and 127 for contact examination (709 subjects in the post-employment group) were examined from December 2010 to April 2012. The new employees were considered as the "non-exposure" group, whereas the post-employment group was considered as the "exposure" group. Multiple logistic regression analyses were used to calculate the odds ratio (OR) for IGRA positivity, adjusted for gender, smoking history, and alcohol intake (model 1), and for years of employment (model 2).

[Results] The exposure group was significantly associated with an increased risk of positive IGRA results, even when adjusted for years of employment (OR: 4.1; 95% confidence interval: 1.4–17.6; P=0.007). Subgroup analyses stratified by profession indicated a significantly increased OR for laboratory technicians, doctors, and nurses in both models. No correlation was observed between the length of employ-

ment and IGRA positivity.

[Conclusion] Exposure to the hospital environment increased the risk of tuberculosis infection for employees irrespective of the length of employment. Laboratory technicians, doctors, and nurses were at the highest risk of infection.

Key words: Tuberculosis, Hospital-acquired infection, Contact examination, IGRA, QFT

¹Department of Laboratory Medicine, ²Department of Respiratory Medicine, ³Department of General Medicine, ⁴Department of Neurology, ⁵Faculty of Infection Control, ⁶Department of Pharmacy, Tohoku Pharmaceutical University Hospital; ⁷Department of Pharmacy, Sendai City Medical Center; ⁸Division of Clinical Infectious Diseases & Chemotherapy, Tohoku Pharmaceutical University

Correspondence to: Tatsuya Abe, Department of Laboratory Medicine, Tohoku Pharmaceutical University Hospital, 1–12–1, Fukumuro, Miyagino-ku, Sendai-shi, Miyagi 983–8512 Japan. (E-mail: abetatsu@hosp.tohoku-pharm.ac.jp)