短 報

Mycobacterium tuberculosis (H37Rv 株) の DL 8280 耐性形式

東 村 道 雄

国立療養所中部病院受付昭和58年12月12日

RESISTANCE PATTERN OF MYCOBACTERIUM TUBERCULOSIS STRAIN H37R $_{ m V}$ TO A NEW ANTIBIOTIC DL 8280

Michio TSUKAMURA*

(Received for publication December 12, 1983)

The resistance pattern to a new antibiotic DL8280 was studied using the strain H37Rv of $Mycobacterium\ tuberculosis$ and the Ogawa egg medium. This organism showed two resistant phenotypes to DL8280, survival curves R1 and R2 (Fig. 1). Lowly resistant phenotype had the resistance level $5\mu g/ml$, when measured by the actual count method⁶⁾⁷⁾, and the mutants with this phenotype appeared in the parent strain at a rate of 10^{-6} . Highly resistant phenotype had the resistance level $100\mu g/ml$ and the mutants with this appeared in the population of the lowly resistant strains at a rate of 10^{-6} . The upper limit of resistance²⁾ was $100\mu g/ml$, which was ca. 300-times higher than the resistance level of sensitive organisms, $0.32\mu g/ml$. To reach the upper limit of resistance, two-step selections of mutants was needed. Hence, the pattern of resistance development is the obligatory two-step pattern. It was characteristic that the mutants grew eugonic colonies on initial isolation. This characteristic was observed previously only in isoniazid-resistant mutants³⁾⁻⁵⁾. The resistance pattern to DL8280 was the same as that of the parent strain in a streptomycin-resistant strain, an isoniazid-resistant strain, a p-aminosalicylate-resistant strain and a rifampicin-resistant strain isolated from the H37Rv strain.

Keywords: Mycobacterium tuberculosis, キーワーズ: Mycobacterium tuberculosis, DL8280, DL8280, Resistance pattern 耐性形式

DL8280 は第一製薬株式会社 (東京) によって開発された新しい抗菌物質で、次の構造式を持つ。(\pm) - 9 - fluoro - 2 , 3 - dihydro - 3 - methyl - 10 - (4 - methyl - 1 - piperazinyl) - 7 - oxo - 7 + Pyrido [1, 2, 3 - de] [1, 4] benzoxazine - 6 - carboxylic acid. 分子式は $C_{18}H_{20}FN_3O_4$, 分子量361.37, DL8280 の抗酸菌に対する抗菌力については前報した 11 。本報では、Mycobacterium tuberculosis + H37Rv 株のDL8280 に対する耐性形式について報告する。

使用菌株は Mycobacterium tuberculosis H37Rv 株 およびそれから分離した streptomycin(SM), isoniazid (INH), p-aminosalicylate(PAS) および rifampicin (RFP)耐性株である。(菌株番号, 05001, 05006, 05009, 05020, および05059)。 SM 耐性株は原株を SM1,000 μ g/ml を含む 1%小川培地に接種して得た。INH耐性株および RFP 耐性株も,同じく原株を INH10 μ g/ml または RFP100 μ g/ml 培地に接種して分離した。PAS 耐性株は,先ず原株を PAS 1 μ g/ml 培地に接

^{*} From the National Chubu Hospital, Obu, Aichi 474 Japan.

種して低耐性株を分離し、次いでこれを PAS 100μ g/ml 培地に接種して分離した。使用した培地は 1%小川培地である。DL8280 は、先ず propylene glycol に10 mg/ml の割合に溶解し、これを更に蒸留水で希釈し、その 1 容を滅菌前の 1%小川培地100容に添加して所要 濃度を得た。培地は 165×16.5 mm の試験管に分注し、90%60分滅菌して斜面培地とした。

被検菌株は1%小川培地に37℃3週間培養し、これ をガラス玉入りコルベン中で10分振盪して均一化し、 0.1% Tween80 水溶液で希釈した。接種に使用した菌 液濃度は、湿菌量10mg/mlを原液(10°)とし、以下 10倍希釈して10-6に至った。各菌液を種々の DL8280 を 含む培地に渦巻白金耳で0.02mlずつ丁寧に培地にすり 込むように接種し(菌の均一な分布を期待して渦巻白 金耳で培地にすり込む),ダブルゴム栓をかぶせて37℃ 4週間培養した。発育した単個集落を各濃度から3個 ずつとって培養し、これから菌液を作って上記と同様 に DL8280 培地に接種した。菌株には次のように記号を つけた。 $DL82801.25\mu g/m l$ に発育した集落 3 個に由 来した株は各々DL1.25a, DL1.25b, DL1.25c と記号 をつけた。次に DL1.25a 株を DL8280 5 μg/ml 培地 に接種して得た集落由来の株は DL1.25a-5a となる。 こうして得た各々の株について、種々の DL8280 濃度に おける survival fraction (発育集落数対接種生菌数の 比)をプロットして、生残曲線 (survival curve) を作 った。詳細は前に報告した2)。各株の生残曲線はその株

(clone) の表現型 (phenotype) とみなされる²⁾。

H37Rv 株, その SM 耐性株, INH 耐性株, PAS 耐性株, RFP 耐性株について得た成績は全く同一であったので,ここには H37Rv 株の成績だけを示す(図 1)。

DL8280 $0.32\mu g/ml$ 培地に発育した集落由来株は原株と同じ生残曲線 (P) を画いた。即ち,これらの集落は原株と同じ遺伝的性質を持っている。DL0.63 $\mu g/ml$ 培地では,接種生菌数が少ないと全く発育が起こらないが,原液接種(生菌数約 10^7)では薄膜発育となった。従って,単個集落の分離は不可能であった。1.25 $\mu g/ml$ 培地では感性菌の発育が全く抑えられて単個集落(本実験の場合14個)が得られた。この集落由来の株は,原株とは明らかに違う生残曲線 R_1 を画いた。即ち,遺伝的変異を起こした菌の clone と考えられた。注目すべきことは,DL8280 耐性菌の発育が 4 週間後に既に eugonic growth を示す集落として認められたことである。このような初代分離における耐性菌集落の eugonic growth は今まで INH 耐性菌だけで認められたものである 3^{3-5} 。

DL8280 の $1.25\sim 5\mu g/ml$ で 分離 された 集落は "actual count 法"⁶⁾⁷⁾で耐性度を測定すると、耐性度 5 $\mu g/ml$ を示し、図 1 の R_1 の生残曲線を画いた。次に R_1 生残曲線を示す株から DL8280 10 または $20\mu g/ml$ に発育した集落を分離培養した株は、耐性度 $100\mu g/ml$ を示し、 R_2 の生残曲線を画いた。しかし、 $100\mu g/ml$ に発育した集落由来株 (例えば DL2.5a-10a-100a)

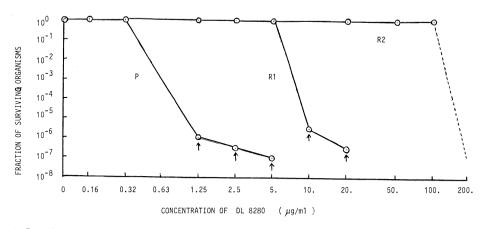


Fig. 1. Survival curves for *Mycobacterium tuberculosis* H37Rv on various concentrations of DL 8280.

P is the survival curve for the parent strain. R1 is the survival curve for lowly resistant strains isolated from the parent strain on the concentrations of 1.25 to $5\mu g/ml$, and R2 is the survival curve for highly resistant strains, which were isolated from the lowly resistant strains on the concentrations of 10 and $20\mu g/ml$. Arrows indicate the concentrations of DL8280, on which the mutants that show a different survival curve from that of the parent strain (P), were isolated. Dotted line shows that no more mutant has been obtained on the concentration of $200\mu g/ml$.

Table 1. Resistance Pattern of Mycobacterium tuberculosis H 37 Rv to a New Antibiotic DL 8280

Number of resistant phenotypes ²⁾	Two phenotypes: Lowly resistant phenotype (survival curve R 1) and highly resistant phenotype (survival curve R 2)
Rate of occurrence in total viable population	Lowly resistant mutants with phenotype R 1: 10^{-6} in the parent strain. Highly resistant mutants with phenotype R 2: 10^{-6} in the lowly resistant strain
Pattern of resistance development ²⁾	Obligatory two-step pattern
Upper limit of resistance ²⁾	$100\mu\mathrm{g/m}l$ (ca. 300-times higher than the resistance level of sensitive bacteria, $0.32\mu\mathrm{g/m}l$)
	Resistance level, Ratio of Rate of occurrence measured by the the estimated* or possible actual count resistance occurrence rate** in method $(\mu g/ml)$ level viable population of the parent strain
Sensitive bacteria	0.32 1 1
Lowly resistant bacteria Highly resistant bacteria	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

から DL8280 $200\mu g/ml$ に発育する集落を得ようとしても不可能であった。即ち、耐性上限 2 は $100\mu g/ml$ と考えられる。

以上の結果から、M. tuberculosis H37Rv株の DL8280 耐性形式をまとめると次のごとくになる(表 1)。 1. H37Rv 株の DL8280 耐性表現型は生残曲線 R₁と R₂の2種である。低耐性菌(表現型 R₁)の耐性度は "actual count 法"測定で5 µg/ml, 高耐性菌 (表現 型 R_2)の耐性度は $100\mu g/ml$ である。なお、感性菌(表 現型 P)の耐性度は0.32µg/ml である。 2 DL8280 の耐性上限は $100\mu g/ml$ であり、これは感性菌の耐性 度 $0.32\mu g/ml$ の約300倍である。 3. 高耐性菌は原 株から直接分離することは出来ないで, 一旦, 低耐性 菌を分離し、これから更に高耐性菌を分離しなければ ならなかった。従って、DL8280 に対する M. tuberculosis H37Rv の耐性発現形式 (pattern of resistance development)は two-step pattern である。two-step pattern は INH 耐性および PAS 耐性で認められている²⁾。 DL8280 耐性菌は初代分離の際でも eugonic growth を 示す。この性質は、これまで INH 耐性菌についてだけ 認められている3)4)。 5.SM 耐性株, INH 耐性株. PAS 耐性株, RFP 耐性株も原株と同じ耐性形式を示し た。

文 献

1) Tsukamura, M.: In vitro antimycobacterial

- activity of a new antibacterial substance DL-8280. Differentiation between some species of mycobacteria and related organisms by the DL 8280susceptibility test, Microbiol Immunol, 27: 1129-1132, 1983.
- 2) Tsukamura, M.: Variation and heredity of mycobacteria with special reference to drug resistance, Japan J Tuberc, 9:43-64, 1961.
- 3) Tsukamura, M.: Mutations and inactivation of mycobacteria induced by ultraviolet irradiation, Japan J Tuberc, 10:1-14, 1962.
- 4) Tsukamura, M. and Mizuno, S.: Cross-resistance relationships among the amino-glucoside antibiotics in *Mycobacterium tuber-culosis*, J Gen Microbiol, 88: 269-274, 1975.
- 5) Tsukamura, M.: Loss of hextuple resistance to aminoglycoside antibiotics in *Mycobacterium tuberculosis* (H37Rv) by mutation to isoniazid resistance and by incubation in high temperature, J Gen Microbiol, 98: 611-614, 1977.
- 6) 東村道雄:Kanamycin の耐性検査, 医学と生物学, 49:87-90, 1958.
- 7) Tsukamura, M.: "Actual count" method for the resistance test of tubercle bacilli, Japan J Tuberc, 12:46-54, 1964.