SM, INH を含む 3 者併用療法中における患者菌株の SM, INH, (PAS) に対する感性の推移および これと臨床的経過の関連に関する研究

第 2 編

大 里 敏 雄・清 水 久 子

結核予防会結核研究所

受付 昭和 39 年 10 月 3 日

STUDIES ON THE TRANSITION OF SENSITIVITY FOR SM, INH AND PAS OF TUBERCLE BACILLI ISOLATED FROM THE PATIENTS

TREATED BY TRIPLE COMBINATION CHEMOTHERAPY
INCLUDING SM AND INH WITH SPECIAL REFERENCE
TO THEIR CLINICAL COURSE*

Toshio OHSATO and Hisako SHIMIZU

(Received for publication October 3, 1964)

成 績 II

菌陰性化に失敗した例について

SM, INH を含む治療により菌陰性化の目的を達しなかつたもの2例と、いつたん陰性化(3カ月以上陰性持続)し、のちに再陽性になつた2例の計4例について、失敗の原因と考えられるものを検討した。

この4例のうち対象選定の基準に合致しないものが2例(1例はSMに,1例はSM,INHに臨床的耐性) あるが,空洞があり,大量の排菌もみられ,菌陰性失敗の理由をそれぞれにもつていたと思われるので,この4例をいつしよにして検討することにした。

各症例の年令, 既往治療の内容, 今回の治療法, X線 所見, 菌の経過, 臨床耐性検査成績および今回の感性検 査の成績は経過表で示した。

第1例は再治療であるが、SM、INH に対する感受性低下は全くない。しかし PAS は耐性検査によつても耐性(10γ 不完全耐性)で、感性検査の成績でも PAS の感性低下が認められる。この例は3者(SM 週3日)併用により2ヵ月以降菌陰性となり、空洞周辺の浸潤影も吸収したが、Kz はやや縮小して残存した。本例は8ヵ月で培養で再陽性となり、このとき SM 100γ 完全、INH

 5γ 完全耐性の菌であることが判明した。本例の菌再陽性化と SM, INH に対する耐性獲得の原因として考えられることは空洞が硬化壁のしかも Kz 型であることと,治療開始前に PAS に耐性のみられたことである。しかし菌陰性化例の項で述べたように,open negative case のうちの 8 例は Kz をもつていたものであることを考えると,Kz は菌再陽性の第1 の原因とは考えられない。第1 の原因は PAS の耐性がはじめからあつたことであり,このために SM, INH に対する耐性獲得が阻止できなかつたものと考えられる。いわば重症例に対して SM-INH の 2 者併用が行なわれた結果となつたわけである。

第2例は初回治療で、SM 毎日(はじめ2カ月、以後 週3回)+INH+Isoxyl の治療が行なわれた。 1カ月の 菌は耐性検査で軽度の耐性があるようにみえるが、本研 究による感性測定では感受性の低下は認められず、5カ月の菌検査は陰性となつた。しかしこの後に化学療法剤によると思われる全身の皮膚炎が漸次悪化したため、TH、CS、INHの併用に切換えたところ、2日目より激烈なアレルギー反応を呈し、すべての投薬を中止せざるをえなくなつた。約1カ月後に INH 単独を少量より再開したが、8カ月目より菌は再陽性となり、INHに対する耐性菌が出現し、以後排菌が続いている。本例は菌

^{*} From Research Institute, Japan Anti-Tuberculosis Association, Kiyose-machi, Kitatama-gun, Tokvo.

陰性化の不確実なうちに、薬剤の副作用のため治療を 中止せざるをえなくなり、菌が再陽性になつたものであ る。

第3例は SM 10γ 完全耐性菌の感染例と考えられる例で、3者併用によつて、菌の陰性化に達しなかつた例である。したがつて、この例は不十分な治療であつたと考えられるが、この例で興味のあることは、 $1\sim3$ カ月

Case 1. Male Aged 51
Retreatment (SM and PAS were already used. Thoracopalasty
was performed before 10 years)

		Month after beginning of chemotherapy								
		0	1 2 3	4 5 6	7 8					
Chemo	otherapy		—SM 3×w— —INH 0.3 g d —PAS 10 g d							
Bacillary result	Smear* Culture	6	$\left \begin{array}{cccc} - & 2 & 1 \\ + & - & - \end{array} \right $		- +					
	Control	+++	##		++					
	SM $\begin{cases} 10 \mu \text{g} \\ 100 \mu \text{g} \end{cases}$	_			# #					
Resistance test	INH $\begin{cases} 0.1 \mu\text{g} \\ 1 \mu\text{g} \\ 5 \mu\text{g} \end{cases}$	-			# # #					
	PAS $\left\{\begin{array}{c} 1 \mu g \\ 10 \mu g \end{array}\right.$	# +1	# +3		# + ₁					
	$SM \begin{cases} 1 \mu g \\ 5 \mu g \\ 10 \mu g \end{cases}$	~10% - -	~20 - -		100 100 100					
Sensitivity test	$\begin{array}{c} \text{INH} \left\{ \begin{array}{l} 0.025 \ \mu\text{g} \\ 0.05 \ \mu\text{g} \\ 0.1 \ \mu\text{g} \\ 0.5 \ \mu\text{g} \\ 1 \ \mu\text{g} \end{array} \right. \end{array}$	70 ~0.1 - -	~20 - - - -		100 100 100 100 100					
	PAS $\begin{cases} 0.1 \mu\text{g} \\ 0.5 \mu\text{g} \\ 1 \mu\text{g} \end{cases}$	100 60 ~30	$100 \\ \sim 100 \\ \sim 40$		100 ~50 0					

^{*} Result of smear was shown by Gaffky scale.

の菌の SM の感性の低下がやや少なくなつたような成績が得られていることと(その結果、臨床的な耐性検査で耐性が認められない)、3 カ月以降に INH 耐性菌が、5 カ月の菌に PAS に対する感性低下菌が出現したことである。治療開始前の菌の SM 耐性は Technical errorではなかつたのであるが、 $1\sim3$ カ月の菌で耐性が認められなかつたことによつて、SM 耐性に対する注意が払

われなかつたとしても無理はないと考えられる。本例は INH 耐性菌がまず 出現したが、PAS よりも耐性獲得の 早いことを裏付けているようである。 また本例の切除肺からの分離菌の薬剤 感性は手術直前の喀痰よりの菌とほぼ 同様な成績を示した(経過表参照)。 本例の菌陰性化失敗の原因は、SM 耐 性菌感染例に SM を含む治療が行なわれた点にあると考えられる。

第4例は前の治療歴が長く,再治療開始前の菌は臨床的耐性検査で INH 0.1γ に完全耐性を示したが,SM,PAS には耐性はなかつた。

しかし,感性の測定を細かく行なつた結果では,INH は 0.1γ に 2% 程度の不完全耐性であり,逆に SM, PASの感受性は低下していた。

したがつて、本例は SM, INH, PAS にそれぞれ軽度の低下が認められたことになり、SM, INH に対する感性低下が菌陰性化失敗の原因であると考えられる(PAS は投与されていないので関係ない)。この例はそのほかに、X線所見のスケッチで示したように、前の治療により両側の空洞内容が排除され、のちに巨大な腔が残存していたという特殊な所見も原因の一つであろう。

以上の4例の菌陰性化失敗の原因を列記すれば、一剤 (PAS) の感性低下がはじめからあること、副作用によつて治療が中断され、その後 INH 単独投与の行なわれたこと、SM 耐性菌感染例であつたこと、SM, INH に感性の低下している例であつたことの4つである。第1例、第4例は再治療であるが、再治療例でも薬剤感性低下のない例には陰性化が持続しているのは先述したとおりであるから (open negative case 18 例中4例は再治療)、再

治療が原因と考えることは無理であろう。

考案

肺結核の治療中における菌の薬剤感性の推移について、低濃度より細かく検討されたものはほとんどない。したがつて、菌が陰性化する場合と排菌のとまらない場合の間に、菌の薬剤感性に差違があるのかどうかについて全く不明である。薬剤感性は菌陰性化までの間に多少とも低下するものなのか、あるいは変化はないのか、さらにまた菌の陰性化しない場合はどうであろうか。これらの点を検討するためには、1剤投与例が適当であるが、

現在は大部分の例に3者併用が行なわれているので、今回はSM, INHを含む治療の行なわれているものを対象としてこの検討を行なつた。対象の大部分の例は菌陰性化したので、菌陰性化失敗例についての検討は不十分であるが、今回得られた成績をもとに考察を加える。

まず菌陰性化例の排菌の推移をみると、治療開始後も 菌の薬剤感性は著明な変化を示さず、治療開始前とほぼ 同様の感性を維持しながら、まず排菌量の減少が起こ る。ついで塗抹陽性→培養陰性の時期がみられるものが あり(とくに open negative case)、これに引続いて菌 の陰性化(塗抹、培養とも)が起こる。菌の再陽性とな

Case 2. Male Aged 61, Original treatment

And the second s					, 3	1 - 64 -		1	41			
							beginning					
			0	1	2	3	4	5	6	7	8	9
				NM d INH 0.5 d			3 × w TH					
Chemo	therapy								INH			
				PAS	_Ioso	xyl 5g	d	—(S ————————————————————————————————————			
Bacillary result	Sm	near	5	_	7	6	_	-	6	_		3
	culture		++	#	#	+	+87			_	#	##
	Control		+	##	#	+	+				##	111
	SM ·	(10 μg		_		_					_	
		100 μg		_		_	_					
Resistance test	INH 〈	(0.1 μg	_	+9							++	##
Resistance rest		$1 \mu g$	_									##
		$\int \mu_{\rm g}$		-	_		-					#
	PAS {	1 μg		+	_		_					_
		10 μg									*****	
Sensitivity test	SM -	(1 μg	~1%	_	_							
		$5 \mu g$	_	_								
		(10 μg		_	_	_						
	INH {	(0. 025 μg	~80	75	100	100	100					
		0. 05 μg	\sim 0.1	0.1	-	_	<u> </u>					
		$0.1\mu\mathrm{g}$		Prome		-	_					
		$0.5\mu\mathrm{g}$	_	_		-	_			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
		$1 \mu g$		_	-	_	_					
	PAS {	(0.1 μg	50			—	_					
		$0.5 \mu \mathrm{g}$	~0.1	_	-	-	_					
		(1 μg	~0.1	_	_							

つた第1例も、はじめの菌陰性化までは同様の推移を示した。すなわち、菌陰性化が起こるまでの間、菌の薬剤感性には著しい変化はないものと考えてよいであろう。したがつて、ある時期に患者の菌の薬剤感性を詳細に調べて感性の低下がみられないならば、菌陰性化が期待できるであろうし、感性の低下があればその薬剤を他のものに変更するほうがよいであろう。第1例ははじめからPASに感性の低下がみられたが、一応菌は陰性化した。その後再び陽性となつたときの菌はSM、INHに高度の耐性を獲得していた。この例ではPASを他の適当な薬剤にかえておけば、open negative の状態を持続しえた

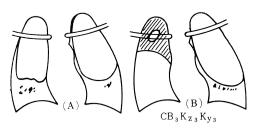
かもしれない。菌の陰性化に失敗した例のうち第 3 例は SM 10γ 完全耐性菌の感染例であるが, 3 カ月で INH 耐性菌が, 5 カ月で PAS 耐性菌が出現した。

菌の感性の推移のみから菌陰性化の可能性を予測することは困難なこともあるが、使用中の薬剤に感性の低下が認められなければ、4~5 カ月くらいまで排菌があつてもその後の陰性化を期待することができるであろう。しかしこのさい、排菌量が漸減していることが必要である。今回の菌陰性化例の排菌量の推移をみると、治療開始前には大部分 冊~冊 の大量の排菌があつたが、治療開始後急激に減少し、3カ月の排菌量が 冊 のものは

Case 3. Male Aged 24, Original treatment

			Month after beginning of chemotherapy							
			0	1	2	3	4	5	6	
Chemotherapy					2×w — 0.5g d			Resection		
Bacillary result		Smear ulture	— 	3 +	7 +	5 +		7 +		
	Control		+ -	+	+	+		+		
Resistance test	SM	$ \begin{cases} 10 \mu_{\rm g} \\ 100 \mu_{\rm g} \end{cases} $	##	_	********				Bacilli	
	INH	$ \begin{cases} 0.1 \mu g \\ 1 \mu g \end{cases} $	_		*****	+ +			isolated from removed	
		5 μg				+			material	
	PAS	$ \begin{cases} 1 \mu g \\ 10 \mu g \end{cases} $			_					
Sensitivity test	SM	$\left\{\begin{array}{c} 1\mu\mathrm{g} \\ 5\mu\mathrm{g} \end{array}\right.$	100% 100	$100 \sim 50$	100 60	100 35		100 100	100 90	
		(10 μg	100	5	10	35		~90	80	
	INH {	$ \begin{pmatrix} 0.025 \mu g \\ 0.05 \mu g \end{pmatrix} $	100	60 —	100 10	100 100		100 100	90 90	
		$\begin{cases} 0.1 \mu\text{g} \\ 0.5 \mu\text{g} \end{cases}$			-	50		100	80	
		$\begin{array}{c} 0.5 \mu\mathrm{g} \\ 1 \mu\mathrm{g} \end{array}$	_	_		50 50		100 90	3 0 3 0	
	D.4.0	(0.1 μg	100	30	50	50		50	90	
	PAS	$\begin{cases} 0.5 \mu\text{g} \\ 1 \mu\text{g} \end{cases}$	0.01	0.1		***************************************		$30 \sim 10$		

5%で、他はすべて200 コロニー以下である。4ヵ月で排菌のあつたものも全例200 コロニー以下で、このうちの66.6%は20 コロニー以下のいわゆる微量排菌であった。したがつて排菌量の順調な減少、薬剤感性の低下のないことの2つの条件がそろつていて、3者併用が規則正しく継続されるならば、菌の陰性化を期待することができると考えられる。


今回の研究で得られたもう一つの成績は、open nega-

tive case に関連する因子として、年令、空洞型、空洞の大きさ、菌の経過などの点が判明したことである。このほかにも因子はあろうし、今回の例数は十分な例数とはいえないが、一応の手懸りは得られたと考える。老人結核の増加に伴い、40 才以上、硬化壁大空洞などの条件をもつた症例の増加と治療の強力化とによつて、今後open negative case が増加することは疑いない。老人結核における open negative case では、空洞壁が菲薄

Case 4. Male Aged 24

Retreatment (SM-PAS-INH treatment was performed for about one and half year)

- (A) Giant cavities were formed after discharge of caseous mass during original chemotherapy
- (B) Before starting retreatment

1754 (F. 1755)			Month after beginning of chemotherapy							
	0	1	2	3~9	10	11~12	13			
Chemotherapy			-	I	M 2×w NH 0.4g ulfa deri	1				
Bacillary result	Smear culture		- + ₅₀	6 ++	3 +		_ +	_	positive at out-patien	
	Со	Control		+	+		+		clinic	
Resistance test	SM {	$10~\mu \mathrm{g}$ $100~\mu \mathrm{g}$	_				_			
	INH {	$0.1\mu\mathrm{g}$ $1\mu\mathrm{g}$ $5\mu\mathrm{g}$	+	-S* - -	<u></u>		# - -			
	PAS {	$1 \mu \mathrm{g}$ $10 \mu \mathrm{g}$	-		<u> </u>					
Sensitivity test	SM {	1 μg 5 μg 10 μg	$ \begin{array}{c c} 100\% \\ \sim 1 \\ \sim 1 \end{array} $	20 1 —	~60 1 —		50 — —			
	INH {	$0.025 \mu \mathrm{g}$ $0.05 \mu \mathrm{g}$ $0.1 \mu \mathrm{g}$ $0.5 \mu \mathrm{g}$ $1 \mu \mathrm{g}$	100 ~100 ~2 ~1 —	100 100 100 1 —	100 100 2 2 -		100 100 ~50 —			
	PAS {	$0.1 \mu \mathrm{g}$ $0.5 \mu \mathrm{g}$ $1 \mu \mathrm{g}$	$ \begin{array}{c c} \sim & 100 \\ \sim & 5 \\ \sim & 5 \end{array} $	100 1 —	~50 2 —		~£0 - -			

^{*} S means contamination

となりえない物理的条件をもつものが少なくないであろうから、今後の open negative case では空洞壁の厚さを治療の目安とすることができないものが多くなるであろう。もちろん菲薄になつた例はより安全かもしれないが、菲薄になりえない例における菌陰性の期間と予後の関係など今後検討を要する問題である。

総括ならびに結論

昭和 37 年 4 月から 38 年 11 月の間に入院し,入院時 明らかな空洞を有し,多量に排菌があり,かつその菌に 臨床上,耐性の認められない例一耐性の基準は本文一の うち,SM,INH を含む治療が行なわれた 36 例を対象 とし,菌所見,臨床的耐性検査成績,X線所見の経過に ついて検討し,また分離された菌株について,SM,INH,PAS に対する感性を低濃度より 測定し,その推移も追求した。菌の感性測定は,SM では 1τ , 5τ , 10τ (2τ , 10τ , 20τ 含有),INH は 0.025τ , 0.05τ , 0.1τ , 0.5τ , 1τ , PAS は 0.1τ , 0.5τ , 1τ の計 11 濃度について実施した。これらの成績を総合分析した結果,次のごとき結論を得た。

- 1) 36 例中 34 例は菌が陰性化した。
- 2) 菌陰性化例から分離された菌株の使用薬剤に対する感性は、治療中とくに変化は認められず、対照に比し SM 1γ に 10% 以上、INH 0.025γ に 50% 以上、PAS 0.1γ に 50% 以上の菌発育を認めたものの率はほぼ大差なく推移した。
- 3) 菌陰性化例から分離された菌のうち、SM 5γ , INH 0.1γ , PAS 1γ に菌の発育を全く認めなかつたものはそれぞれ 89 株中 85 株, 90 株中 88 株, 63 株中 57 株であつた。また SM 5γ , INH 0.1γ , PAS 1γ に 菌発育を認めたものも、その発育菌の割合は SM 5γ で

は 3% 以下, INH 0.1 γ は 30% 以下, PAS 1 γ は 1% 以下であった。

- 4) 菌の陰性化した 34 例のうち, 空洞消失 (充塞, 濃縮, 瘢痕化) したものが 16 例, 空洞が残存するいわゆる open negative case が 18 例であつた。
- 5) open negative case と空洞消失例を比較した結果, 40 才以上, 大空洞, 硬化壁空洞の場合に open negativeになりやすく, かつ陰性化に達する前に塗抹陽性→培養陰性を示すケースが多く, 最多の例では5回にこのような現象がみられた。
- 6) 菌陰性化に失敗したものは先述の 2 例のほかに,はじめ SM, INH に感性低下および SM に耐性を示した 2 例を含めて 4 例であるが, SM 10 γ 完全耐性菌の感染, SM, INH 両剤に感性低下, PAS に対する感性低下, 副作用による中断が原因と考えられた。

今回の例のうち、投与薬剤に感性低下のなかつた例、あるいは副作用による中止例以外はすべて菌の陰性化が達せられた。これは全例に SM, INH を含む3者併用が行なわれており、治療の強力化によるものであろうと考えられる。従来、硬化壁空洞を有するものでは、菌陰性化に失敗し耐性菌の出現するものがかなりあつたが、治療を強化することにより失敗例が少なくなることは疑いない。このさいに使用薬剤に対する菌の感性を詳細に検討することによつてさらにいつそうの好成績を得ることができるものと考えられる。

稿を終わるに当り、ご校閲いただいた岩崎竜郎所長に 深謝致します。

対 対

1) 亀田和彦:結核, 37:664, 1962.