Kanamycin耐性結核菌の検査について

第 3 報 耐性値に及ぼす第一燐酸カリゥムおよびグルタミン酸ナトリゥムの影響

小川辰次·島田英彦 遠山和明·本庄茂敏

北里研究所付属病院 (院長 宗武藤)

受付 昭和 33 年 11 月 22 日

I 緒 論

われわれは第1報1),第2報2)において,同一患者の喀痰につき変法III Kirchner 寒天培地と Kirchner 寒天培地を用いて直接法による耐性値を比較する場合,および同一患者につき直接法に変法 III Kirchner 寒天培地を使用して比較する場合は,いずれも Kirchner 寒天培地を使用して比較する場合は,いずれも Kirchner 寒天培地の耐性値よりも低い値を示すことを報告した。この事実はおそらく培地中に混入された KH_2PO_4 の量に関係するのではないかと推定されたので,さらに実験を進めてこの事実を確かめることができたし,また偶然の機会より同じ変法III Kirchner 寒天培地に混入されているアスパラギンの代りに,グルタミン酸ナトリゥムを混入すると耐性値が高くでることを認めたので併わせて報告する。

Ⅱ実験方法

- a. 用いた培地
- 1. Kirchner 寒天培地

$\mathrm{KH_{2}PO_{4}}$	0.4 g
NaH_2PO_4 ······	0.3 g
硫酸マグネシア	0.06 g
枸櫞酸ナトリゥム	0.25 g
アスパラギン	0.5 g
グリセリン	1.5 cc
0.1% マラカイト緑	0.25 cc
Bacto-Agar (Difco) ·········	2.0 g
蒸溜水	

以上に馬血清を 10 % の割に混入して, 5 cc 宛中試験管に分注する。pH 6.8, 中和した可検材料, あるいは前処理をしない菌液の培養に使用するともつとも発育がよい。

2. 変法Ⅲ Kirchner 寒天培地

Kirchner 寒天培地に おける $\mathrm{KH_2PO_4}$ の量を 1.0~g に増量してある。その他は Kirchner 寒天培地と同様である。この培地の pH は $6.2\!\sim\!6.3$ であつて,その中

に 4% 水酸化ナトリッムで処理した材料を 0.1~cc 接種すると、ほぼ $6.8\sim6.9$ となる。この培地は 4% 水酸化ナトリッムで処理した可検材料を 0.1~cc 接種するとき発育がもつともよい。

 変法Ⅲ Kirchner 寒天培地における KH₂PO₄ の 代りに NaH₂PO₄ を基汁 100 cc について 0.7g 混入して作つた寒天培地

鶏卵培地である 3% 小川培地において,その中に混入されている KH_2PO_4 の代りに NaH_2PO_4 を用いても,同じようによく発育することを証明している。この鶏卵培地より計算して上述の量が,至適の発育を示すものと推定されたので,0.7~g が混入された。pH はほぼ変法III Kirchner 寒天培地と同様であつて,発育の点も変法III Kirchner 寒天培地とほぼ同様である。

4. 変法Ⅲ Kirchner 寒天培地におけるアスパラギッの代りにグルタミン酸ナトリッムを混入したもので、その量は、基汁 100~cc について 0.3~g であつて、この量は発育の至適量である。この培地は、変法Ⅲ Kirchner 寒天培地と同程度の発育を示す。pHも変法Ⅲ Kirchner 寒天培地とほぼ同様である。

以上の 4 種の培地に KM を培地 1cc について 1γ , 2γ , 4γ , 8γ のように混入して, さらに KM の混入 されない 1 本の培地を加えて 1 組の耐性培地として使用した。

b. 対象

保存人型結核菌の H₃₇Rv 株, 黒野株, ならびに患者 の塗抹陽性の喀痰を使用した。

- c. 検査の方法
- 1. 4% 水酸化ナトリゥムでのみ処理する場合;

菌液は、まず手振り法で、滅菌蒸溜水により 1mg/cc の菌液を作り、これを 4% 水酸化ナトリッムで適当に 稀釈して、その 0.1~cc 宛を接種した。 喀痰は型のごとく、4% 水酸化ナトリッムで $5\sim10$ 倍に稀釈、十分に 均等化してその 0.1~cc 宛を接種した。

2. 4% 水酸化ナトリッムで処理するとともに、中 和して、その両方の材料を接種する場合;

フェノールレッドの 0.004 % に混入してある 4 %

水酸化ナトリゥムで約 10 倍に喀痰を稀釈し、十分に均等化したうえ、これを 2 本の 滅菌試験管に 2 cc 宛わける。一方の試験管の均等液には 8 % 塩酸を少量宛加えて中和する。他の一方の試験管には中和に要した塩酸の量だけの 4 % 水酸化ナトリゥムを加えて 2 本の試験管の均等液を同量とし、その 0.1 cc 宛を接種した。

培養後は、型のように斜面全体を培養した液でうるおし、斜面を水平として斜面合の上にねかし、 $37\,^{\circ}C$ に $2\,^{\sim}3$ 日保存して、液のほぼ乾燥したところでたててゴムのキャップにかえて培養を継続した。

d. 判定

 $4\sim5$ 週で判定した。 そして 結核菌の 集落を 認めた Kanamycin (以下 KM と略) の 最高の 濃度を もつて 耐性値とした。

Ⅲ成績

a. KH₂PO₄ の影響

1. Kirchner 寒天培地と変法Ⅲ Kirchner 寒天培地 に、4 % 水酸化ナトリゥムで処理した材料と中和した 材料を同時に接種した実験

Kirchner 寒天培地と変法皿 Kirchner 寒天培地で作った耐性検査培地を 1 組とし、1 つの喀痰について 2 組を用い、1 組は 4 % 水酸化ナトリゥムで処理したものを、他の 1 組には中和したものを接種して KH_2PO_4 の影響をみた。

これらの 培地に おける菌の 発育をみると、中和して Kirchner 寒天培地に接種したものと、4 % 水酸化ナトリゥムで処理して変法III Kirchner 寒天培地に接種したものがもつともよく、次に 4 %水酸化ナトリゥムで処理して Kirchner 寒天培地に接種したものであり、中和したものを変法III Kirchner 寒天培地に接種したものはもつとも悪い。しかし大ざつばにみれば塗抹陽性の喀痰であるためにこれらの培地の間の発育には著明の差はない。

このような方法で 10 例の喀痰を検査した。

表 1 はその中の 2 例を示したものであるが, (1) (2) の略族ともに, 前処理の方法のいかんにかかわらず, 変法III Kirchner 寒天培地が Kirchner 寒天培地に比して高い耐性値を示している。pH の影響でないことは, Kirchner 寒天培地に 4 % 水酸化ナトリゥムで処理してうえ, あるいは中和して接種したときの pH がそれぞれ 7.8, 6.6 を示すにかかわらず, 耐性値はほとんど差のないことでもわかる。

次に 4% 水酸化ナトリッムで処理して接種した場合と、中和したものを接種した場合の培地の差による耐性値の相関関係を示したのが表 2の(1)(2)であり、これらを総括したものが(3)である。すなわち 4% 水酸化ナトリッム処理では 10 例中の 9 例が、中和では 10 例中

の 8 例が変法Ⅲ Kirchner 寒天培地に おいて高い 耐性

表 1 Kirchner 寒天培地, 変法 II Kirchner 寒 天培地に喀痰を 4% NaOH で処理してう え, さらに中和して接種した例の一部

	,	プロイングログ こ 1女性	E O ICDIO	HÞ	
患者	前処理の	培地	Kirchner	変法Ⅲ	
番号	方 法	混入 濃度 γ/cc	寒天培地	Kirchner 寒天培地	
		8 γ	_	_	
		4	- pH	- pH	
	4% NaOH	2	- 7.8	+ 6.9	
		1	##	##	
(1)		0	- ##	###	
G.6号		8 γ	_	_	
		4	- pH	+ pH	
	中 和	2	- 6.6	+ 6.2	
		1	-	##	
		0	##	1111	
		8γ	-	The second secon	
-		4	_	_	
	4% NaOH	2	_	+	
		1	130	111	
(2)		0	- +111-	##	
G.3号		8 γ	_	_	
		4	-	#	
	中 和	2	-	#	
	-	1	145	##	
		0	###	##	

注: 表中の記載は集落数を示す その記号は次のようである

₩…斜面全体に融合して発育したもの

卌・斜面全体に発育しているが集落が孤々になっているもの

₩…斜面の 2/3 程度の集落数

+…斜面の1/2程度の集落数

+…集落が小さくて数えられないもの

数字は数を示す

-…集落の認めないもの

表 2 Kirchner 寒天培地, 変法Ⅲ Kirchner 寒 天培地に喀痰を 4% NaOH で処理してう え, さらに中和してうえた 10 例の耐性値 の相関関係とその総括

(1) 4% NaOH 処理

			Kirchner 寒 天 培 地							
		0	1 γ	2 γ	4 γ	8 γ				
ń:	0	1								
 左	1γ	3								
П	2	2	3							
音也	4		1							
בי	8									

(2) 中和処理

			Kirchner 寒 天 培 地									
		0	1 γ	2 γ	4 γ	8 γ						
	0	1										
変法	1γ	2	1									
Ш	2	1	1									
培地	4	1	3									
- 6	8											

(3) 総括

前処理	4% N	NaOH	中	和
混入 濃度 (y/cc) 培地	Kirchner 寒天培地	変法Ⅲ培 地	Kirchner 寒天培地	変法Ⅲ培 地
8 γ	0	0	0	. 0
4	0	1	0	5
2	0	5	0	1
1	4	3	5	3
0	6	1	5	1

注:表中の数字はすべて例数を示す

値を示している。これを総括してみると中和して変法Ⅲ Kirchner 寒天培地に接種したものがもつとも高い耐性 値を示している。なおこれを詳細にみると、変法Ⅲ Kirchner 寒天培地において 2 段階以上の高い耐性値を示 しているのは 4% 水酸化ナトリゥム 処理で 3例,中 和で5例で、ことに後者においては3段階以上の高い 耐性値を示したものが 1 例ある。 以上の 成績から変法 Ⅲ Kirchner 寒天培地においては、Kirchner 寒天培地 に比して明らかに耐性値が高い。すなわち KH2PO4 の 量の多いところでは、耐性値が高くでることがわかる。

2. 変法Ⅲ Kirchner 寒天培地と, 変法Ⅲ Kirchner 寒天 培地の KH₂PO₄ の代りに NaH₂PO₄ を加えた培 地による実験

これらの 培地に KM を混入して作つた 2 組の培地 に同時に、4% 水酸化ナトリゥムで 処理した 菌液およ び喀痰を 0.1~cc 宛接種比較した。

菌液の成績は表 3 のようであつて、H₃₇Rv 株、黒野 株, ともに 10⁻²mg では, 変法 Ⅲ Kirchner 寒天培地 の方が NaH_2PO_4 に変えた培地に 比して 1 段高い耐性 を示しているが,10⁻³mg ではほとんど差がない。次に 患者の 5 例の喀痰について比較したのが表 4 である。 すなわちこれらの成績では、両培地における耐性値はほ とんど差がない。両培地における発育をみると、菌液で は変法Ⅲ Kirchner 寒天培地が多少発育がよいが喀痰で

表 3 変法Ⅲ Kirchner 寒天培地, 変法Ⅲ Kirchner 寒天培地の KH2PO4 を NaH2PO4 にかえた培地に保存人型結核菌を接種した 成績

接種菌量 変 法 III 変 法 III KH ₂ PO ₄ を
喜株 の混入量 mg mg mg mg
(1))
8 γ
4 # - - -
$H_{37}Rv$ 2 $\#$ $\#$ $\#$
1 ## ## ##
0 ## ## ##
8 γ – – –
4 2
黒野 2 # 18 20
1
0

注:表中の記載は集落数を示す その記号は表 1 に同じ

表 4 変法III Kirchner 寒天培地, 変法 III Kirchner 寒天培地の KH₂PO₄ を NaH₂PO₄ にかえた 培地に 4% NaOH で処理した喀痰の5例を 接種した成績

Kanamyc	in の投与の有無					
		投与	iしな	7.5	投与した	
息者	番号および ガフキー番号					
培地	Kanamycin の混入量 (γ/cc)	(4) G. II号	(3) G. II号	(5) G. 呱号	(9) G. VI号	(8) G. IX号
	8 γ	_	-	_	++	###
変 法 Ⅲ	4	_	-	-	##	11111
Kirchner	2	-	+	##	###	###
寒天培地	1	14	++	11111	-##	###
	0	26	+	1111	#	11111
変法Ⅲ	8 γ	-	-	-	#	##
Kirchner 寒天培地の	4	- "	-		##	##
$\mathrm{KH_2PO_4}\mathcal{O}$	2	-	+	++	###	11111
代りに NaH ₂ PO ₄	1	6	1	1111	##	1
を用いた培地	0	42	#	11111	##	1111

注:表1に同じ

は差がない。菌液における耐性値の差は発育によるもの と仮定すると,KH₂PO₄ でも NaH₂PO₄ でも同様の耐 性値を示したと考えてよい。したがつて耐性値には KH2 PO_4 も NaH_2PO_4 も同様に影響するものと推定される し, さらにはその中の PO₄ が影響を与えるのではない かとも推定される。

b. グルタミン酸ナトリゥムの影響

変法III Kirchner 寒天培地と、変法III Kirchner 寒天培地のアスパラギンの代りにグルタミン酸ナトリッムを加えた変法IV Kirchner 寒天培地で作つた耐性検査培地に、KMを使用したことのない患者の喀痰を 14 例培養比較した。

表 5 変法Ⅲ Kirchner 寒天培地と,変法Ⅲ Kirchner 寒天培地のアスパラギンの代りにグルタミン酸ナトリゥムを混入した変法 Ⅳ Kirchner 寒天培地に喀痰を 4% NaOH で処理して接種した成績

(1) 5 例の成績

患者番号		1) 5号	G.	3) 3号	G.	5) 1号	(1 G.	2) 5号	(1 G.	-4) 3号
混入 濃度 (γ/cc)	Ш	IV	Ш	IV	Ш	IV	Ш	IV	Ш	IV
8γ		-	_	_	_	_	_	_	_	_
4	-	-	_	+		-	_		_	+
2	#	##	-	#	_	-	-	#		#
1	##	##	#	##	-	#	_	##	#	##
0	₩	###	###	##	++-	#	##	###	##	##

注:表1に同じ

(2) 14 例の喀痰による耐性値の相関関係

		変	法 Ⅲ Ki	rchner 第	医天培 均	也
		0	1 γ	2 γ	4 γ	8 γ
जांद स्टॉक	0					
変寒法	1γ	2				
[VKirchne;	2	2	3	1		
hne	4		3	1		
	8				2	

注:表中の数字は例数を示す

そのうちの 5 例を示したのが表 5 の(1)であり、相関関係を示したのがその(2)である。

(1)をみると、5 例中の 1 例がほとんど同じ耐性値を示しているが、残りの 4 例は、変法IV培地において 1 段あるいは 2 段の高い耐性値を示している。 相関関係をみると、1 例のみが同じ耐性値を示しているが、残りの 13 例は変法IV Kirchner 寒天培地において高い耐性値を示している。 すなわちアスパラギンの代りにグルタミン酸ナトリゥムを加えたものが耐性値が高い。

IV 総括および考案

柳沢ら³⁾ は H₂ 株により, 内藤⁴⁾ は H₃₇Rv 株により Kirchner 培地と Dubos 培地の両液体培地による Kanamycin の阻止力を比較し Dubos 培地が阻止力の

強いてとを認めている。また W. Steenken $\mathfrak S$ らは H_{37} Rv 株により同様の実験を Proskauer-Beck 培地と Dubos 培地につき実施し,Dubos 培地における 阻止力の強いてとを証明している。柳沢らは,この事実を Dubos 培地中に混入されている表面活性物質によるであろうと推定している。なお W. Steenken $\mathfrak S$, および R.A. Patnode $\mathfrak S$ らは, Proskauer-Beck 培地を使用し,血清,アルブミン等の影響を実験し,これらが混入されるときは Kanamycin の阻止力が弱くなることを証明している。

このように Kanamycin の阻止力,換言すれば結核菌の Kanamycin に対する耐性値は培地中に混入される表面活性物質,血清,アルプミン等によつて影響される。われわれはさらに馬血清を加えた Kirchner 寒天培地を土台として種々実験した結果,変法Ⅲ Kirchner 寒天培地すなわち $\mathrm{KH}_2\mathrm{PO}_4$ の量が Kirchner 寒天培地に比して 2.5 倍量に増量されている培地では,その耐性値が $2\sim4$ 倍に上昇することを認めた。この傾向は鶏卵培地における 1 % 小川培地と 3 % 小川培地においても認められるが,寒天培地におけるほど著明ではない。これは卵黄に Kanamycin が吸着されるために,その差が少なくなるのであろう。

次にわれわれは変法III Kirchner 寒天培地の KH_2PO_4 の代りに NaH_2PO_4 を加えて作つた培地で比較すると、耐性値はそう大した差はなかつた。すなわち NaH_2PO_4 でも同様な影響があることを認めた。

次にわれわれは変法III Kirchner 寒天培地のアスパラギンの代りにグルタミン酸ナトリッムを加えた変法IV培地とを比較すると、変法IV培地の耐性値が変法III培地に比して 2 倍、4 倍に上昇するのをみた。 すなわち 窒素 源として用いられるアミノ酸の種類によつても影響されることがわかつた。

以上のような事実の機序については全然わからない。しかしいずれにしても従来まで報告されていない。ただ A. Gourevitsch 7)らが心臓浸出液培地を 用いた 黄色ブドウ球菌による実験では,塩化ナトリゥム,塩化カリゥム,塩化カルシゥム等を1モルの割合に加えると,耐性値が高くでるし,大腸菌の実験では pH 7.2 の 燐酸緩衝液を種々の濃度に混入してみたところ,高濃度では耐性値が高くでることを報告しているにすぎない。

以上われわれの認めた事実は Kanamycin に対する耐性結核菌の検査には心すべきことと思われるので、あえてここに報告した次第である。

V 結 論

肺結核症の患者の略換および保存人型結核菌、 H_{37} Rv株、黒野株等を 4 % 水酸化ナトリゥムで処理し、あるいは中和して、Kirchner 寒天培地、変法皿Kirchner 寒

天培地,変法III Kirchner 寒天培地の KH₂PO₄ の代りに NaH₂PO₄ を混入した培地,変法IV 培地等で Kanamycin に対する耐性値を検討し次のような結果を得た。

- 1) 10 例の喀痰を用いて、Kirchner 寒天培地と変法 III Kirchner 寒天培地 (KH_2PO_4 が 2.5 倍に増量されている) に 4 % 水酸化ナトリゥムで処理してうえると、そのうちの 9 例が、また中和した 材料を うえると 8 例が、変法 III Kirchner 寒天培地において 2 倍、4 倍の耐性値の上昇をみた。そしてその他のものは同じ耐性値を示した。とくに Kirchner 寒天培地において高い耐性値を示したものは 1 例もない。すなわち KH_2PO_4 が多くなると耐性値は高くなる。
- 2) 変法III Kirchner 寒天培地の KH₂PO₄ の代りに NaH₂PO₄ を使用した培地を用いて、喀痰、H₃₇Rv 株、 黒野株を 4 % 水酸化ナトリゥムで前処理して接種するとほぼ変法III Kirchner 寒天培地と同様の耐性値を示した。すなわち NaH₂PO₄ も KH₂PO₄ 同様に Kanamycin に対する耐性値を上昇する。
- 3) 14 例の喀痰を 4 % 水酸化 ナトリゥムで 前処理 して変法Ⅲ Kirchner 寒天培地と、変法Ⅲ Kirchner 寒 天培地の中のアスパラギンの代りに、グルタミン酸ナト リゥムを加えた変法Ⅳ培地に接種して耐性値を比較する と、そのうちの 13 例は変法Ⅳ培地において 2~4 倍の

耐性値の上昇をみた。他の 1 例は同じ耐性値を示した。 すなわち培地に混入されるアミノ酸の種類によつても耐 性値に影響されることがわかつた。

この研究の一部は、昭和 33 年 11 月文部省科学研究 費 4 化学療法による治癒機転の研究 4 班に、またその一 部は厚生省結核療法研究協議会細菌科会に提出した。同 班より研究費の補助を受けた。厚く感謝する。

文 献

- 1) 小川・沢井・島田: 結核, 33:749, 昭33.
- 2) 小川・沢井・島田: 結核, 33:807, 昭33.
- 3) 柳沢・佐藤:日本細菌学雑誌, 12:857, 昭32.
- 4) 内藤: 文部省科学研究費 4 化学療法による結核治 癒機転の研究 7 班, 昭和33年 5 月報告.
- 5) W. Steenken, Vincent Montalbine & J.R. Thurston: Annals of New York Academy of Science, 76: 103, 1958.
- 6) R.A. Patnode & P.C. Hudgins: Am. Rev. Tbc., 78: 138, 1958.
- A. Gourevitsch, G. A. Hunt & L. Lein:
 Antibiotics and Chemotherapy, 8: 149, 1958.