人型結核菌 INAH 耐性株の Population 構成 および耐性復帰に関する検討

三 浦 幸 二

国立療養所大府荘一指導一荘長 勝沼六郎博士

受付昭和31年5月14日

Isonicotinic acid hydrazide- (以下 INAH と略) resistant mutants の in vitro における耐性度につい て、Pansy、F. ら1)は、BCGにおいて、INAH への耐 性は, in vitro で迅速に現われ, またあきらかに迅速に 耐性復帰を認めたといつており、Szybalski ら2)は、M. ranae において、INAH の first step colonies は、 morphology, growth rate においてことなるが、その 後 INAH の存在しない培地にうえついだ場合, resistant strains が sensible strains により overgrown され, reversibility を示す。 しかし, これによりただ ちに、in vivo で reverse するということはいえぬと いつている。これに反し Fisher³)は,耐性度の消夫お よび低下をみぬとしている。臨床的には、わが国におい ても、宝来ら4)、上島ら5)、石川ら6)は、耐性復帰を認 めている。佐藤7),8)は、患者の排出略痰について, INAH 耐性度に対する検討を行い, さらに, INAH 耐 性結核菌 population の継代培養による変動をみ、5代 継代では、その耐性菌 population には変化がなく、完 全に INAH 耐性を保持したといつている。なお患者よ り分離した INAH 耐性菌では、INAH を加えぬ小川培 地に継代すると、その耐性菌の population に大きな変 動のおこる例もあつたといつている。さらに佐藤⁹⁾ は, INAH 感性および耐性結核菌を,人工的に混合した population の耐性度の動態について観察し、混合 population に分布する耐性菌の比率は、一定の割合で減少 していくのを認めた

著者は、INAH の存在する培地に数代継代培養し、 高度純粋なる INAH 耐性菌を使用し、in vitro におけ る耐性復帰を検討する目的にて実験した。

使用菌株および使用培地

菌株は、われわれ研究室の東村が、Mycobacterium tuberculosis var hominis, strain Aoyama B. (以下青山B株と略) より分離せる INAH 10ヶ 耐性株で、INAH 10ヶ/ml 含有せる1%小川培地に、8代継代培養せるもので、その population 構成は、表1に示す通りである。

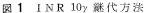
および、同じく東村が、青山B株より分離せるINAH 100 γ 耐性株を使用した。その population 構成は、表 1に示す通りである。

表 1 使用菌株の Population

INAH 10γ 耐性菌株

 $\begin{array}{ccccc} & V.C. & & 65.8 \pm & 3.55 \\ & I N & 1\gamma & & 38.4 \pm & 7.09 \\ & I N & 10\gamma & & 16.9 \pm & 2.95 \\ & INAH & 100\gamma & m性菌株 & & & & \\ \end{array}$

V·C 178. 4 \pm 48. 2 I N 10γ 130. 6 \pm 40. 5 I N100γ 73. 3 \pm 32. 4


使用培地は、1%小川(辰次)培地で、その培地組成は、第1燐酸カリ、1.0g; グルタミン酸ソーダ、1.0g; 蒸溜水、100ml; を基質とし、これに無精維卵、200ml; グリセリン、6.0ml; 2%マラヒットグリーン、6.0ml を加え、85°C、1時間凝固滅菌せるもので、pH は7.0であつた。

INAH は、田辺製薬会社製の新しきものを使用した。 なお薬剤は、幾固滅菌に先立ち、その所定の濃度に、培 地に加えられた。

実験方法および実験成績

(1) INAH 10y 耐性株について

図1に示すごとく, INAH 107 耐性株を, INAH を 含有しない1%小川培地と, INAH 10y/ml を含有せる 1%小川培地に培養せる菌株を、それぞれ、ガラス玉と ともに、ナス型コルベンにて、10分間振盪、生理的食塩 水にて、均等菌浮游液となし、その10進法による稀釈液 を, INAH を含有しない培地と (生菌数), INAH 10 :/m' を含有せる培地 (INAH 10y 以上耐性菌数) に, 大型渦巻白金耳にて、一白金耳ずつ等量接種し、 37°C 4 週培養し, 生菌数当りの INAH 10γ 耐性菌の 100 分 率をもとめて、 population の構成をしらべた。以下同 様にして、3代目まで population の構成をしらべた が、その結果は、図2のごとくである。すなわち、薬剤 を含有しない培地に継代した場合にも、薬剤を含有する 培地に継代した場合にも、その他の継代条件(たとえば INAH を含有する培地 → INAH を含有しない培地 → INAH を含有する培地) においても, population 構成 に変化はないが、耐性度の不均一が予想される。

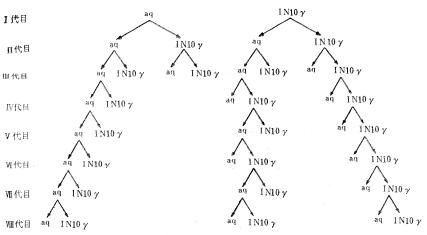
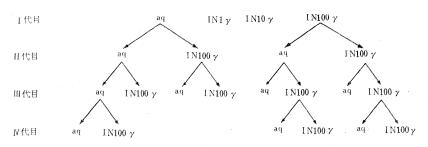



図2 INR 100y 継代方法

4代目以下は、(1) INAH を含有しない培地に継代せる場合、(2) INAH を含有する培地と、INAH を含有しない培地に交互に継代せる場合、(3) INAH をつねに含有せる培地に継代せる場合と、3つの場合に限定して、

継代培養を行つた。その結果は、表2、3に示すごとく、その結果は、3代目までと同様に、population 構成の不変と、不均一性が予想された。

表 2 INR 10γ 継代せる場合における生菌数当り INAH $10\gamma/ml$ を含有せる 培地の INAH 10γ 耐性菌百分率($I\sim IV$ 代目)

	115	r-t			無		有 69.3				
1	17	Ħ		31	1.06	-					
	/ b.	1	#	ŧ	1	有	無		有		
Ⅱ 代		Ħ	52	.7	93	3. 5	84. 8		23. 7		
***	//-	Ħ	無	有	無	有	無	有	無	有	
Ш	15		80. 5	69. 9	61.3	86. 1	100.0	39.8	96.7	55. 1	
***	//>	Ħ	無				無			有	
IV	17		60. 4				83. 4			102.8	

(ただし 無:INAH を含有しない場合,有:INAH 10y/ml を含有せる場合)

すなわち、表 2 、3 にて、 INAH を含有しない培地 のみに継代した場合は、1 代目以下 8 代までの、INAH 10γ 耐性菌の生菌数に対する100分率は、31.06%、52.7%、80.5%、60.4%、50.2%、44.9%、25.3%、37.3 %であり、INAH 10y/m を含有する培地に継代した 場合は、69.3%、23.7%、55.1%、102.8%、62.4%、 89.7%、130.2%、74.0%であり、INAH を含有する培 地と、INAH を含有しない培地に交互に継代した場合に

継	代 条	件	INAH	を含有しな	い場合	INAHを	交互に含有	する場合	INAH を	つねに含有	する場合
培具	也薬剤	濃度	0.1 у	1 γ	10 γ	0.1γ	1 γ	10 γ	0.1γ	1 γ	10 γ
V	代	Ħ	55. 3	41. 2	50. 2	71.3	78.3	66.6	77.7	72.9	62. 4
VI	代	Ħ	102. 0	82.0	44. 9	102. 9	107.0	97.5	90.0	97.5	89.7
VII	代	Ħ	57.6	57.1	25. 3	86. 6	72.6	81.3	91. 9	144. 1	130. 2
VIII	代	目		81. 2	37.3	Value and the second se	98.8	86.0		73. 1	74.0

表 3 INR 10yを継代せる場合における生菌数当り各薬剤濃度を含有せる 培地の生菌数百分率 (V~WI代目)

は、1代目より3代目までは、31.06%、93.5%、61.3%、または、69.3%、84.8%、39.8%で、4代目より8代目までは、83.4%、66.6%、97.5%、81.3%、86.0%、であり、population 構成の動揺が認められた。

なお1代目より3代目までは、継代条件を変えた場合、なにか一定の関係が見出されるかもしれぬと考えたので、種々な組合せにしたが、一定の関係を見出すことはできなかつた。

(2) INAH 100y 耐性株について

図 2 に示すごとく、INAH 100γ 耐性株も、INAH 10γ 耐性株と同様に、ナス型コルベンにて、均等浮游液となし、その稀釈液をもつて、薬剤を含有しない培地(生菌数)、INAH $1\gamma/ml$ 含有培地(INAH 1γ 以上耐性菌数)、INAH $10\gamma/ml$ 含有培地(INAH 10γ 以上耐性

菌数), INAH 100γ/ml 含有培地 (INAH 100γ以上耐性菌数) に、大型渦巻白金耳にて、一白金耳ずつで等量接種し、37°C 6週培養し、生菌数当りの、INAH 1γ培地の耐性菌数、INAH 10γ培地の耐性菌数、およびINAH 100γ培地の耐性菌数の 100分率を出し、それをもつて、継代の第1代目とし、2代目は、1代目の薬剤を含まぬ培地に生えた INAH 100γ耐性菌の populationを、上述とまつたく同様の操作により、その population 構成をしらべ、3代目以下は、同一の実験操作にて、(1) INAH を含有しない培地ばかりに継代する場合、(2)交互に継代する場合、(3)つねに、INAH を含有する培地に継代する場合にわけて、population の構成をしらべた。その結果は、表4のごとくで、INAH 10γ 耐性菌

							-co/ Herri	1- 12						
	<u> </u>	/ h. ==	INAH 1 γ 48.6				INAH 10γ 73.1				INAH 100γ			
Ι	代	目												
			d d			1.			,		7	有		
П	II代目		1 γ		10 γ		100 γ		1 γ		10 γ		100 γ	
			74. 5		74.3		56. 9		63. 3		49.8		43.7	
			無			有			無			有		
Ш	代	目	1	10	100	1	10	100	1	10	100	1	10	100
				46. 8	20.6		53. 6	33. 4	89. 0	126. 2	112.3	126. 2	116.0	75. 3
	#							有			有			
IV	代	目 1	1	10	100				1	10	100	1	10	100
			111.8	106. 2	73. 4				86. 2	68. 5	43. 9	141.8	83. 4	87. 9

表 4 INR 100y 継代における population

の場合と、全く同様に、population 構成の不変と、不均 一性を予想せしむる結果をえた。

すなわち, INAH を含有しない培地にのみ継代した場合には、1代目より4代目までの生菌数に対するINAH 100γ 耐性菌の100分率は、41.1%、56.9%、20.6%、73.4%、であり、INAH 100γ/ml をつねに含有する培地にのみ継代した場合には、41.1%、43.7%、75.3%、

87.9%であり、INAH を含有しない培地と、INAH 100 γ/ml をつねに含有する培地に交互に継代した場合には、41.1%、43.7%、112.3%、43.9%であり、INAH 10γ 耐性菌の場合と同じく、 population 構成の動揺が認められた。

INAH 10γ 耐性株、および INAH 100γ 耐性株について、上述の実験成績よりして、population 構成の不変と、不均一性が考えられるが、ここで第 1 に問題となることは、使用菌株に感性菌を混入していなかつたかということである。すなわち、感性菌を混入していれば、感性菌の overgrown により、不均一を思わせる実験成績がでることは、当然考えられるからである。この点、使用した菌株は、INAH 10γ 耐性株の場合には、countできる程度、すなわち、200 コーニー前後に接種し、さらに、その全培養をとり、均等浮游液をつくつて、またそれを、countできる程度に接種し、同様の操作により、INAH $10\gamma/ml$ 含有せる培地に 8 代継代せるものであつて、1 つの clone と考えられるべき性質のもので、感性菌は充分 select してある。

INAH 100y 耐性株の場合は、同様の操作にて分離して、2代継代したものを使用した。しかし、この場合にも、継代を重ねて、selectを重ねて行けば、もちろん継代の初期においては、感性菌または、耐性度の低いものを含んでいることがあつたとしても、継代を重ねれば充分 select される筈である。

次に、使用菌株は、人型結核菌青山B株を使用したものであるが、他の菌株については、行わなかつたことを 附記する。

第2に、population 構成の不変は、佐藤りの成績と一致して、INAH 10ヶ 耐性株、INAH 100ヶ 耐性株においても、継代条件を(1) INAH を含有しない培地に継代した場合、(2) INAH を含有する培地と、INAH を含有しない培地に交互に継代した場合、(3) INAH を常に含有する培地に継代した場合と変えても、populationの構成に変化を認めなかつたが耐性度が、不均一性(INAH 耐性菌の本来の性質として)のために、動揺するものと思われる。

ここで問題となるのは、実験誤差により、100分率が動揺するのではないか、ということである。しかし、本実験においては、全培養をとり、ナス型コルベンにて振盪し、均等浮游液となし、その稀釈液を厳密に等量ずつ接種し、colony count による、生菌数にたいする、耐性菌の率で、試験管1本当り100~200 の colony 数であり、平均誤差よりみても充分信頼のおける数字で、実験誤差であるとは思われない。

表 5 に示すごとく、4 代目 INAH 100γ 耐性株の、 $V.C.=67.6\pm9.8$ と、IN $100=29.7\pm5.36$ の間には、統計的に有意の差を認めた。同様に、2 代目 INAH 10γ 耐性株の $V.C.=525.4\pm61.8$ と、IN $10=163.2\pm59.7$ の間にも、有意の差を認めた。

したがつて、上述の結果より、100 分率 の 動揺 は、 INAH 10y 耐性菌、INAH 100y 耐性菌ともに、本来 の性質としての不均一性のためと、考えられる。

表 5 統計的観察

VI代目 INR	100γ	
\circ v.c		67.6 ± 9.8
I N	1	58.3 ± 17.2
IN	10	46.4 ± 17.5
\cup IN	100	29.7 ± 5.36
II代目 INR	10γ	
○ V.C		525.4 ± 61.8
IN	10	163.2 ± 59.7
WI代目 INR	10γ	(薬剤を含まぬ培地に継代
○ V.C		350.4 ± 82.0
IN	1	200.6 ± 36.3
OIN	10	89.7 ± 22.6

INAH- 耐性菌の population 構成が、不均一であるということは、population を構成する individual cells の耐性度の低下が起ることを示している。したがつて、individual cells の耐性度は、不均一性のために動揺するけれども、population としての耐性度が、低下するとは思われない。 INAH-耐性菌に、population としての back mutation が、起るのであれば、INAH 耐性菌を、INAH を含有せぬ培地に継代することにより、population の耐性度が低下する筈であるが、上述のように、population としての耐性度は、低下を示さなかつた。したがつて、individual cells の耐性度の低下は、あつても、感性菌への back mutation ではなく、INAH 耐性菌を生ずる性質を保持しているものと思われる。

ここで、さらに考えられるのは、population を構成する individual cells の中で、耐性度の低下した individual cells と、高い耐性度の individual cells との間の発育速度に、相違がある場合には、耐性度の低い individual cells の overgrown による reverse が、考えられる。1%小川培地における、INAH 100ヶ 耐性菌と、INAH 100ヶ 耐性菌と、 は、 関本検討中にて、 別報に譲るが、 single cells を接種して、 colonies を肉眼でみとめるまでの期間を検討するに、 INAH 耐性菌、感性菌ともに、同一であつた。したがつて、両者の間に、大きな差があるとは思われない。これから考えると、低い耐性度の individual cells の overgrown による reverseは、 今直に考えることはできないものと思われる。

結論

- (1) INAH 10y 耐性菌を, INAH 10y/ml を含有する 培地で, 8代継代しても, また INAH を含有しない培 地で8代継代しても, population 構成は変らなかつ た。
 - (2) INAH 100y 耐性菌を, INAH 100y/ml を含有す

る培地で、4代継代しても、また INAH を含有しない 培地で、4代継代しても、population 構成は変らなか つた。

- (3) INAH 耐性菌の population 構成は、本来の性質 として、不均一であると考えられる。
- (4) INAH 耐性菌の population 構成の不均一性は,population を構成する individual cells の耐性度の低下がおこることを示している。したがつて,individual cells の耐性度は,不均一性のために,動揺するけれども,population としての耐性度が,低下するとは思われない。
- (5) INAH 耐性菌に、population としての、 back mutation が、おこるのであれば、INAH 耐性菌を、INAH を含有せぬ培地に継代することにより、population の耐性度が低下する筈であるが、上述のように、population としての耐性度は低下しない。したがつて、individual cells の耐性度の低下はあつても、感性菌へのback mutation ではなくて、INAH 耐性菌を生ずる性質を保持しているものと思われる。

御指導および御校閲を賜わつた,国立療養所大府荘荘 長勝沼六郎博士,名古屋大学医学部内科第一講座日比野 進教授に感謝します。なお本研究を行うに当り,御助言 を賜わつた当大府荘の,東村道維博士,君野徹三博士に 感謝します。なお御協力を賜わつた、当大府荘研**究室加** 藤千代女史、鈴木を枝氏に感謝します。

本論文の要旨は第31回日本結核病学会にて発表した。

参考文献

- 1) Pansy, F., Stander, H. & Donovick, R.: Am. Rev. Tuberc., 65 (6): 761-764, 1952.
- Szybalski, W. & Bryson, V. ; Am. Rev. Tuberc., 65 (6): 768—770, 1952.
- 3) Fisher, M.W.: Am. Rev. Tuberc., 66 (5): 626-628, 1952.
- 4) 宝来 他: 日本臨床結核, 13:672-677, 1954.
- 5) 上島・稿本・石田・八坂 : 日本臨床結核, 14: 501—511, 1955.
- 6) 石川 他: 結核, 30: 183-189, 1955.
- 7) 佐藤: 医学と生物学、31:250-254、1954.
- 8) 佐藤: 結核, 30: 310-314, 1955.
- 9) 佐藤: 結核, 30:119-122, 1955.
- Johnston, R.N. and Riddell, R.W.: Am. Rev. Tuberc., 70: 442—452, 1954.
- 11) Steenken et al.: Am. Rev. Tuberc., 65: 754, 1952.