Abstract [Objectives] To investigate gender difference in index and secondary patients with or without household contact.

[Subjects and Methods] The subjects of this retrospective study were 3,174 pulmonary TB patients registered in Aichi prefecture between 1989 and 2003. All recorded files were reviewed to identify epidemiologically-related TB patient clusters. In case of epidemiologically-related patients registered within less than 10 years interval, the first registered patients was defined as the index case of the cluster. The other patients in the cluster were defined as secondary cases. Therefore, all pulmonary TB patients were classified to index, secondary, or unclustered cases. An index patient with sputum smear positive was defined as the source of transmission in the cluster. The male/female ratio was calculated separately in the sources and secondary patients with or without household contact.

[Results] A total of 100 source patients were identified. Of these, 77 were male and 23 were female, and the male/female ratio was 3.3. The secondary patients were 153, of whom 77 were male and 76 were female, and the male/female ratio was 1.0. The difference of the male/female ratio was statistically significant (p<0.001).

The male/female ratio in the source patients was 2.5 for 78 clusters with household contact and 21.0 for 22 clusters without household (p<0.05), while the ratio in the secondary patients were 0.8 and 2.2 respectively (p<0.01). Of the 111 secondary patients with household contact, the relations to the source patients were wife–husband in 32, parent–child in 55, brother or sister in 12, grandparent–grandchild in 8, and the others in 4. In the 32 wife–husband transmission, most secondary patients were female (male/female = 9/23) while in other 67 transmissions with household contact, male and female secondary cases were almost same (male/female = 39/40). The male/female ratios in these two settings were significantly different (0.4 vs 1.0, p<0.05). Of the 42 secondary patients without household contact, transmission occurred in working places in 24, schools in 11, religion circles in 4, hospital in one, and others in 2. The male/female ratio of secondary cases was 7.0 for transmission at working places, and 0.8 for transmission at the other places (p<0.01).

[Conclusion] These findings suggest that the male/female ratio of secondary patients with household contact is significantly lower than that of those without household contact.

Key words: Gender difference, Male/female ratio, Smear-positive pulmonary tuberculosis, TB transmission inside and/or outside household

1Aichi Konan Health Center, 2Aichi Seto Health Center, 3Aichi Toyokawa Health Center

Correspondence to: Takeo Inoue, Aichi Konan Health Center, Nishi 80, Hoteishimoyama-cho, Konan-shi, Aichi 483-8146 Japan. (E-mail: konan-hc@pref.aichi.lg.jp)
LIVER DAMAGE IN TREATMENT OF LATENT TUBERCULOUS INFECTION BY ISONIAZID

Kunihiyo ITO, Hitoshi HOSHINO, Tomoaki NAKAZONO, Hidenori MASUYAMA, Hironobu SUGITA, Takashi YOSHIYAMA, and Seiya KATO

Abstract [Purpose] To study the frequency and degree of liver damage as adverse effect of isoniazid (INH) preventive therapy in Japanese people.

[Result] There were 779 cases who did not transiently or completely stop INH preventive therapy because of adverse effect, and 26 cases who stopped INH transiently or completely because of liver damage as adverse effect (total 805 cases). In 371 cases, of those 779 cases, AST (asparate aminotransferase) and ALT (alanine aminotransferase) was measured after starting INH at least once. In 14.9% (59/397) of these 391 cases (1.97 + 26), liver damage as adverse effect was found. In 1.51% (6/397), liver damage with AST and/or ALT higher than 400 IU/L was found. Clinical hepatitis, associated with isoniazid compared with four months of isoniazid and rifampin for persons with radiographic evidence of previous tuberculosis. Am J Respir Crit Care Med. 2000; 162: 1648~1652.

が、化学療法以外には定まった治療法はなく外科治療の報告も少ない。外科治療後にどれくらい抗結核薬を投与するかは不明で、今後症例の集積が必要である。

文 献

1）結核予防会：「結核の統計2005」．初版，結核予防会，東京，2005；42-53。
2）久原克彦，豊島 宏，永山壽人，他：結核性腰膜癌の1例．臨床放射線，1996；41：813-816。
3）藤田正樹，栄田輝恵子，岸本隆史，他：当科で経験した腰膜癌の3例．日本骨・関節感染症研究会雑誌，1998；12：94-98。
4）山本健哉，吉岡伸浩，加藤誠成，他：結核性が疑われた後腹膜腫瘍に対するミノマイシン硬化療法と有効であった1例．泌尿器科，2003；49：761-764。
5）井上三四郎，松元信雄，岩松陽一郎，他：巨大な結核性腎側肺癌の1例．整形・災害外科，2005；48：885-888。
6）青木雅人，金森昌彦，瀬住純也：脊椎骨変を伴わない両側性結核性腰側肺癌の1例．整形外科，2005；56：1311-1314。
9）日本結核病学会治療委員会：「結核医療の基準」の見直し．結核，2002；77：537-538。

Case Report

A CASE OF TUBERCULOUS PSOAS ABSCISS SUCCESSFULLY TREATED WITH SURGERY DURING ANTITUBERCULOSIS THERAPY FOR MILIARY TUBERCULOSIS

Naoya KATSURAGI, Yuji SHIRAISHI, and Hidefumi KITA

Abstract A case of tuberculous psoas abscess complicated during antituberculosis therapy for miliary tuberculosis and successfully treated with surgery was reported. A 20-year-old man visited our hospital because of fever lasting for 3 months. Chest radiography showed miliary nodules in both lungs and transbronchial lung biopsy revealed granuloma. Magnetic resonance imaging of the head showed small lesions in the brain. Computed tomography of the abdomen showed an enlarged paraortic lymph node and a nodule in the spleen. Needle biopsy of the lymph node revealed necrotic tissue. Mycobacterium tuberculosis was not isolated; however, miliary tuberculosis was highly suspected based on clinical and radiographic findings. Once antituberculosis therapy was initiated with isoniazid, rifampicin, streptomycin, and pyrazinamide, the fever subsided. In spite of improvement of general radiographic findings, a new abscess was found in the right psoas major muscle after 8 months of therapy by computed tomography. A sample of the abscess showed a positive smear, negative culture, and positive PCR test for M. tuberculosis. Although antituberculosis therapy continued for another 6 months, the abscess enlarged to 7 cm and new retroperitoneal lymph nodes also appeared. Surgical drainage and curettage of the abscess was performed. Intra- and post-operative specimens were negative for bacteria, fungi, and M. tuberculosis. The patient was treated with isoniazid, rifampicin, and ethambutol for one year postoperatively. The disease disappeared without any evidence of relapse for 2.5 years after surgery.

Key words: Tuberculous psoas abscess, Miliary tuberculosis, Psoas abscess, Tuberculosis, Surgery

Section of Chest Surgery, Fukui University Hospital, Japan Anti-Tuberculosis Association (JATA)

Correspondence to: Naoya Katsuragi, Section of Chest Surgery, Fukui University Hospital, JATA, 3-1-24, Matsuyama, Kiyose-shi, Tokyo 204-8522 Japan.
(E-mail: katsuragi@fukuiji.org)
Case Report

A CASE OF DISSEMINATED TUBERCULOSIS COMPLICATED WITH TUBERCULOUS MENINGITIS WHILE INVESTIGATING AN ABDOMINAL LYMPHADENOPATHY

Junichi TSUYUSAKI, Yuka SASAKI, Fumio YAMAGISHI, Takenori YAGI, Tomohiro HASHIMOTO, Rei BEKKU, and Makako YAMANAKA

Abstract In February 2005, a 33-year-old man visited A hospital complaining of fever. The blood screening test revealed the liver dysfunction, then computed tomography showed swelling of abdominal lymph nodes. In April, headache and disorientation appeared. He was diagnosed as disseminated tuberculosis and tuberculous meningitis based on chest X-ray and computed tomography findings and examination of cerebrospinal fluid. After admission to our hospital, anti-tuberculous drugs were prescribed, but the cerebral infarction happened. The disturbance of consciousness and the left half of his body paralysis appeared. They did not improve and hydrocephalus was complicated in August, though he was treated by steroids. He needed all helps because of the left half of his body paralysis and an advanced sequelae was left. It was thought that the abdominal lymph adenopathy preceded as one of symptoms of the disseminated tuberculosis in this case. It is said to be rare that abdominal lymph node swelling is seen in the early stage of disseminated tuberculosis. But, we think that it is necessary to keep in mind that the possibility of disseminated tuberculosis as one of the diseases in differential diagnosis, when we examine enlargement of abdominal lymph nodes with symptoms suggesting the presence of infection such as fever.

Key words: Tuberculous meningitis, Abdominal lymph node tuberculosis, Disseminated tuberculosis

Department of Respiratory Medicine, National Hospital Organization Chiba-East National Hospital

Correspondence to: Junichi Tsuyusaki, Department of Respiratory Medicine, National Hospital Organization Chiba-East National Hospital, 673 Nitona-cho, Chuo-ku, Chiba-shi, Chiba 260–8712 Japan. (E-mail: j-tsuyu@ehpnet.com)
テミシンは、結核のリファンビシンと同じように、最も重要な薬剤で、この薬剤を単剤治療の耐性化によって失うと、今後の10年間は新規薬剤を見込めならないからです。

（3）マラリア対策を成功させるための課題

マラリア対策の課題をいくつか挙げてみたいと思います。英国 London School of Hygiene and Tropical Medicine のマラリアの御所である Dr. Greenwood と話してみてびっくりしたのは、単剤治療にこだわっていて併用療法などの意見を聞こうとしないことでした。そもそもマラリア対策に関わっている人々がとても閉鎖的で、他国との連携ができていません。結核や AIDS などの他の感染対策については全く関心がなく、単剤治療による耐性誘導という、他の感染対策では当然のことが理解されていません（おそらく、安価なクロロキンの有効性が維持されていたことが、その一つの要因だと思います）。

また、感染対策の立案やその効果判定に必要な疫学がマラリア対策にはありません。1960年代のマラリアの広がりから、マラリア原虫の数を推測しているような状態です。さらに感染対策に結びつこうようなマラリア研究が著しく立ち遅れており、治療薬を 2 剤や 3 剤の合剤にして耐性化を防ぐのか、それとも耐性化には新規薬剤の開発で対応するのか、といった戦略上の判断に役立つようなデータはありません。おそらく、これらのことを抜本的に変えないかぎり、マラリア対策は成功しないと思います。

6. おわりに

結核対策の今後の課題は、AIDS が蔓延する中でどのような新たな戦略を立てるかです。AIDS 対策については、患者対策の最優先から公衆衛生へとパラダイムをシフトさせていくことが肝要です。前二者に対してマラリア対策は一番遅れており、対策の専門家・從事者の考え方を転換するという大きな課題があると思います。

The 81st Annual Meeting Invited Lecture

THE COMPARISON OF TREATMENT BETWEEN TB, AIDS, AND MALARIA FROM PUBLIC HEALTH PERSPECTIVE

Arata KOCHI

Abstract Millions of people, mostly in Africa and Asia, die of the main infectious diseases such as tuberculosis, AIDS and malaria every year. In this talk, based on my experience in addressing global public health issues of the infectious diseases, I summarized key points to a successful international health initiative, and outlined achievements and problems in the global control strategy of tuberculosis, AIDS and malaria.

Key words: Tuberculosis, AIDS, Malaria, Public health

Global Malaria Programme, World Health Organization

Correspondence to: Arata Kochi, Global Malaria Programme, World Health Organization, Avenue Appia 20, 1211 Geneva 27, Switzerland.
CHARACTERISTICS OF A DIAGNOSTIC METHOD OF TUBERCULOSIS INFECTION BASED ON WHOLE BLOOD INTERFERON-\(\gamma\) ASSAY

Nobuyuki HARADA

Abstract It is assumed that about 10% of individuals infected with \textit{M. tuberculosis} (Mt) develop tuberculosis (Tb), and the remaining 90% suppress contain Mt through their immune systems, but have a latent tuberculosis infection (LTBI). To effectively control Tb, it is essential to detect individuals with LTBI in a Tb outbreak and provide chemoprophylaxis for them.

Until recently, the tuberculin skin test (TST) has been the only diagnostic method for LTBI. However, the specificity of TST is low, because the purified protein derivative (PPD) used for TST contains numerous Mt antigens that are almost identical to BCG antigens or similar to non-tuberculous mycobacterium (NTM) antigens. For this reason, TST may produce positive results in BCG-vaccinated individuals or NTM-infected individuals without Mt infection. Therefore, it is very difficult to diagnose LTBI in Japan, where BCG vaccination is widely administered. In addition to this, TST has other defects, such as technical variations for injecting PPD or measuring the TST response, the necessity of a return visit to the doctor to measure the TST response 2 days after PPD injection, and the booster effect through reinjection of PPD.

More recently, a new diagnostic method that can overcome these defects in TST, QuantiFERON\textregisteredTB-2G (QFT-2G), has been developed. In QFT-2G, two Mt-specific antigens, ESAT-6 and CFP-10, are used to stimulate whole blood, and based on produced interferon-\(\gamma\) (IFN-\(\gamma\), Mt infection is diagnosed. Since ESAT-6 and CFP-10 are absent from all \textit{M. bovis} BCG substrains and most of NTM including \textit{M. avium, M.intracellulare}, but are present in tuberculosis complex (\textit{M. tuberculosis}, \textit{M. bovis, M.africanum}) and only a few strains of NTM, QFT-2G is not affected by prior BCG vaccination nor most of NTM infections. Moreover, as measurement of IFN-\(\gamma\) can be carried out by machines on the next day following the blood draw, more objective results are obtained more quickly than with TST. It is not necessary to consider the booster effect in QFT-2G as PPD is not injected, nor to revisit the doctor. Thus, QFT-2G overcomes the defects of TST described here.

From a clinical trial of QFT-2G in which the subjects were smear-positive, untreated Tb patients and BCG-vaccinated healthy individuals, it has been demonstrated that the specificity and sensitivity of QFT-2G are 98.1% and 89.0%, respectively, and QFT-2G is an excellent diagnostic method. Furthermore, many contact investigations have shown that QFT-2G detects not only active Tb but also LTBI. Several data indicate that frequency of contact with Tb patients correlates well with QFT-2G positive rates in contact investigations. The validity and usefulness of diagnosing LTBI by QFT-2G have been suggested in other countries.

In many contact investigations, it has been shown that most contacts who had been diagnosed as LTBI based on TST results were QFT-2G negative, suggesting that as a result, many unnecessary chemoprophylaxes were indicated. On the contrary, many QFT-2G positives were identified in those who were diagnosed to be uninfected with Mt based on TST. Therefore, as the wide spread of QFT-2G testing in contact investigations would prevent unnecessary chemoprophylaxes and detect true infected individuals more accurately, we hope that more effective Tb control could be performed.

Although QFT-2G is an excellent diagnostic method, it is still new, and some questions remain to be answered. For example, the period of converting QFT-2G positive after Mt infection, alteration of long-term QFT-2G responses after Mt infection, and the effects of treatment for Tb or LTBI are not fully understood. The behavior of QFT-2G in infants or children is not understood either. Especially in infants, the problem of the blood volume required for the QFT-2G test is the major issue. We are working on these issues to provide more appropriate directions for QFT-2G users, and hope that we can contribute to Tb control.

Key words: Diagnosis of tuberculosis infection, Tuberculin skin test, QuantiFERON\textregisteredTB-2G, Latent tuberculosis infection, Contact investigation

Immunology Division, Mycobacterium Reference Center, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association (JATA)

Correspondence to: Nobuyuki Harada, Immunology Division, Mycobacterium Reference Center, Research Institute of Tuberculosis, JATA, 3–1–24, Matsuyama, Kiyose-shi, Tokyo 204–8533 Japan. (E-mail: harada@jata.or.jp)
PROTECTIVE IMMUNITY AGAINST \textit{MYCOBACTERIUM TUBERCULOSIS}

Ikuo KAWAMURA

Abstract \textit{Mycobacterium tuberculosis} (MTB) is a facultative intracellular pathogen with which over a billion people have been infected and 3 million people die annually. The bacterium induces vigorous immune responses, yet evades host immunity, persisting within phagosomes of the infected macrophages. Thus, it is necessary to delineate that the virulence-related intracellular survival mechanism and the host immune responses to eradicate \textit{M. tuberculosis} on the molecular basis. In this regard, recent findings clearly indicated that Toll-like receptors (TLRs) play an essential role in the recognition of MTB components by macrophages and dendritic cells, resulting in not only activation of innate immunity but also development of antigen-specific adaptive immunity. It has been also reported that induction of early death of the infected cells may be one of the strategy of host defense against MTB because macrophages go into apoptosis upon infection with MTB, resulting in suppression of the intracellular replication. Furthermore, recent report has shown that autophagy is induced by IFN-\(\gamma\) and suppress intracellular survival of mycobacteria, suggesting that activation of autophagy pathway is required to overcome phagosome maturation arrest induced by MTB. In addition, it is known that IFN-\(\gamma\) plays an important role in protection. The cytokine that is produced from NK cells and dendritic cells at the early period of infection strongly induces not only macrophage activation but also development of antigen-specific IFN-\(\gamma\)-producing CD4\(^+\) T cells. Since antigen-specific CD8\(^+\) T cells and CD1-restricted T cells are also reported to contribute to the protective immunity, cooperation of these T cells is essential for the host resistance. In this paper, I am going to summarize the recent progress of the understanding of protective immunity against MTB.

Key words: \textit{Mycobacterium tuberculosis}, Macrophages, Toll-like receptor, T cells, Apoptosis, Autophagy, IFN-\(\gamma\)

Department of Microbiology, Kyoto University Graduate School of Medicine

Correspondence to: Ikuo Kawamura, Department of Microbiology, Kyoto University Graduate School of Medicine, Yoshidakonoe-cho, Sakyo-ku, Kyoto-shi, Kyoto 606-8501 Japan. (E-mail: ikuo_kawamura@mb.med.kyoto-u.ac.jp)

The 81st Annual Meeting Symposium

A NEW ERA OF MOLECULAR EPIDEMIOLOGY OF TUBERCULOSIS IN JAPAN

Chairpersons: 1Tetsuya TAKASHIMA and 2Tomotada IWAMOTO

Abstract

Molecular epidemiology of tuberculosis (TB) is a science to study TB transmission dynamics and to enhance our understanding of the epidemiology of TB by utilizing molecular typing methods as an adjunct to classical epidemiological approach. Before the era of molecular epidemiology, it was quite difficult to ascertain the source of the infections since *M. tuberculosis* is spread by air-borne droplets of respiratory secretions expelled by an infectious person to a susceptible host and it can remain latent as an asymptomatic infection for years. Now a day, our understanding of TB transmission dynamics has been refined by genotyping of *M. tuberculosis* strains.

The methods of molecular epidemiology, especially IS6110 RFLP of *M. tuberculosis*, were first introduced to outbreak investigations and then gradually been expanded its application to population-based study in Japan. IS6110 RFLP is obviously a powerful tool for strain differentiation of *M. tuberculosis* but its labor-intensiveness limits the achievable throughput and makes it less useful for long-term prospective studies. Recently, apart from IS6110 RFLP, DNA amplification-based method, i.e., variable number of tandem repeats (VNTR) has appeared as a substitute for or adjunct to the IS6110 RFLP.

In this symposium, we have invited four opinion leaders in molecular epidemiology of TB from different fields: Mycobacterium reference center, basic science, clinical practice, and public health practice. We, as the chairpersons of this symposium, hope that this symposium would trigger the development of molecular epidemiological network of TB in Japan.

1. Achievement and problem of molecular epidemiologic study with IS6110-RFLP analyses of tuberculosis in Okinawa: Shinji MAEDA (Mycobacterium Reference Center, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association)

The long-term RFLP analyses of tuberculosis in Okinawa showed that endemic *M. tuberculosis* might be present. This is one of the achievements of our project study. On the other hand, for more effective examination of contact persons, information of molecular epidemiology should be used actively. Therefore because the analysis report needs to be sent back quickly, the PCR-based VNTR method should substitute for the RFLP analysis.

2. Basic knowledge and application of Variable Numbers of Tandem Repeats: Kei NISHIMORI (Department of epidemiology, National Institute of Animal Health)

Genomic loci of Variable Numbers of Tandem Repeats (VNTR loci) in *Mycobacterium tuberculosis* complex and *Mycobacterium avium*, the history of analysis of VNTR loci, the hypothetical mechanisms of increase or decrease of number of repeats, the structures of the loci, and the necessity of standardizing the VNTR typing were introduced.

3. Clinical application of VNTR: Tomoshige MATSUMOTO,
and Hiromi ANO (Department of Clinical Research and Development, Osaka Prefectural Hospital Organization Osaka Prefectural Medical Center for Respiratory and Allergic Diseases)

Tuberculosis genotyping was first introduced to outbreak investigations and population-based studies. The advent of Variable Numbers of Tandem Repeats (VNTR) can be applied to clinical fields of not only *Mycobacterium tuberculosis* but also of *Mycobacterium avium*. In Osaka Prefectural Medical Center for Respiratory and Allergic Diseases, clinical application of VNTR was first introduced in Japan to determine whether *Mycobacterium tuberculosis* or *avium* disease was caused by reactivation or reinfection when relapsed. We showed some examples about usefulness of the clinical application of VNTR.

4. Molecular epidemiology of tuberculosis to improve TB prevention and control activities: Tomotada IWAMOTO (Department of microbiology, Kobe Institute of Health), Riyo FUJIYAMA, Noriko TANAKA, Yasuto KAWAKAMI (Kobe City Public Health Center), Chika SHIRAI (Hyogo-ku Health and Welfare Department, Kobe)

M. tuberculosis isolates in Kobe have been characterized as:

- Beijing family strains are highly prevalent (77%),
- two major MIRU profiles in Beijing family were found, one is globally pandemic genotype and the other is locally prevalent strains,
- six strains belonged to T3-Osaka family, and
- Manila family strains made cluster consisting of 3 strains.

Kobe VNTR Database which consists of 12-loci MIRU and 9 additional VNTR loci has been developed. The basis for the selection of these supplemental 9 VNTR loci and the application of VNTR database in TB control program were introduced.

Key words: Molecular epidemiology of tuberculosis, IS6110 RFLP, VNTR

1Osaka Prefectural Hospital Organization Osaka Prefectural Medical Center for Respiratory and Allergic Diseases, 2Kobe Institute of Health

Correspondence to: Tomotada Iwamoto, Department of Microbiology, Kobe Institute of Health, 4–6, Minatojimakanamichi, Chuo-ku, Kobe-shi, Hyogo 650–0046 Japan.
(E-mail: toмотada_iwamoto@office.city.kobe.jp)