CLINICAL ANALYSIS OF *MYCOBACTERIUM ABSCESSUS* PULMONARY INFECTION IN OUR HOSPITAL

Yoshihiro KOBASHI and Mikio OKA

Abstract [Objective] We analyzed the clinical characteristics of pulmonary infection due to *Mycobacterium abscessus*.

[Materials and Methods] Four cases diagnosed with *M. abscessus* pulmonary infection encountered at Kawasaki Medical School Hospital and affiliated hospitals over the last five years were enrolled in this study. They all satisfied the diagnostic criteria of the Japanese Society for Tuberculosis. The clinical findings in this study were also compared to those of previously reported cases in Japan.

[Results] The average age of the four cases was 56 years (one male and three females). All four cases showed underlying diseases, comprising two cases with malignancy, one with old pulmonary tuberculosis and one with collagen vascular disease receiving immunosuppressive treatment. Three cases were detected based on clinical symptoms, and one was incidentally identified during follow-up for another underlying disease. Laboratory examinations revealed mild or moderate inflammatory responses in three of the four cases, and three of the four were smear-positive for acid-fast bacilli in the clinical specimens (sputum in one and bronchial alveolar lavage fluid in two) microbiologically. The radiological examination revealed that one case showed tuberculosis resembling a cavitary lesion and three showed the small nodular and bronchiectatic type. The extent of lesions was within the unilateral lung in all cases. Concerning treatment for *M. abscessus* pulmonary infection, combined multi-drug chemotherapy using IPM/cs, AMK, CAM, and LVFX was carried out in three of the four cases, achieving a satisfactory clinical effect. However, one case died due to progression of the underlying disease before the initiation of treatment.

[Conclusion] Although *M. abscessus* pulmonary infection was more frequent in cases with underlying disease, the early, appropriate administration of antibiotics was performed in two of the four cases correctly diagnosed using bronchoscopic procedures, resulting in clinical improvement.

Key words: *Mycobacterium abscessus* pulmonary infection

Division of Respiratory Diseases, Department of Medicine, Kawasaki Medical School

Correspondence to: Yoshihiro Kobashi, Division of Respiratory Diseases, Department of Medicine, Kawasaki Medical School, 577 Matsushima, Kurashiki-shi, Okayama 701–0192 Japan. (E-mail: yoshihiro@med.kawasaki-m.ac.jp)
Abstract [Introduction] Tuberculosis (TB) remains a major public health problem in the Western Pacific Region. More than 20% of the global burden of TB is found in the Region. In 2007, the latest year for which data is available, there were an estimated 1.9 million incident cases (109 per 100,000 population). Four countries (Cambodia, China, the Philippines and Vietnam) account for 93% of the total estimated incident cases in the Region. Every year an estimated 300 thousand persons die due to TB. The Region is host to an estimated 135,000 multi-drug resistant TB cases, most of which can be found in China.

[TB prevalence and TB mortality] The Regional Stop TB strategy aims to halve the prevalence and mortality rates of 2000 by 2010. Based on current estimates, the TB prevalence declined with 24% between 2000 and 2007, while TB mortality declined with 19% in the same period. Given the current annual decrease in TB prevalence and mortality, it is unlikely that the Region will achieve the 50% reduction by 2010.

[Case finding] Approximately 1.4 million new TB cases were notified in the Region in 2007, of which close to 0.7 million smear-positive cases. Cases from China accounted for 70% of the total notified smear-positive cases. The Regional case detection rate was sustained at 78%. Case detection rates in China, the Lao People’s Democratic Republic, Mongolia, the Philippines and Vietnam exceeded the 70% target.

[Treatment outcomes] A total of 92% of the 0.7 million new pulmonary smear-positive cases registered for treatment in 2006 were successfully treated. The treatment success rates exceed the 85% target in all countries with a high burden of TB, except Papua New Guinea where it was reported at 73%.

[Multidrug-resistant TB] In 2007, the proportion of MDR-TB in new TB cases was estimated to be 4%. A total of 135,411 MDR-TB cases was estimated to have occurred in 2007. Based on the overall case management data, 10,231 new patients and 1,596 re-treatment patients were reported with available drug susceptibility testing (DST) results in the Region. Of these, 1% (89/10,231) and 29% (468/1,596) had MDR-TB, respectively. Capacity to detect and treat MDR-TB cases is still very limited in most countries in the Region. Eighteen countries and areas in the Region have conducted drug resistance surveillances (DRS) since 2000, according to the Global Project on Anti-tuberculosis Drug Resistance Surveillance. Among new TB cases, the prevalence of multidrug-resistant TB (MDR-TB) ranged from 0% in Cambodia to 11.1% in the Commonwealth of the Northern Mariana Islands. MDR-TB prevalence among re-treatment cases ranged from 3.1% in Cambodia to 27.5% in Mongolia. In the five countries with a high burden of TB with available data from surveys (Cambodia, China, Mongolia, the Philippines, and Vietnam), MDR-TB prevalence in new cases and re-treatment cases ranged from 0% in Cambodia to 4.9% in China and from 3.1% in Cambodia to 27.5% in Mongolia, respectively. Notably, there were alarming rates of MDR-TB in several provinces in China among both new and re-treatment cases. Increasing numbers of MDR-TB cases are reported from Papua New Guinea.

[TB-HIV co-infection] The overall estimated prevalence of HIV in new TB cases in 2007 was 2.7%. With 8.0% in 2008 compared to 11.8% in 2003, Cambodia shows a declining prevalence of HIV in new TB cases. There was a significant increase in the use of anti-retroviral therapy (ART) in the Region. However, detailed and complete data as well as strong collaboration in HIV and TB management are needed to be able to closely monitor the use of ART and its impact on TB-HIV co-infection in the Region.

[Conclusion] In spite of the substantial progress made in most countries with a high burden of TB, substantial challenges remain in the Region. The rate of decline in TB prevalence and mortality is too low to reach the
50% reduction goal in 2010. It will be necessary to further increase TB case detection and address the emerging spread of drug-resistant TB. The slow response in the most affected countries in the Region is a cause for concern. Strong commitment by national governments and their partners is needed to sustain and further strengthen the current TB control efforts.

Transcript from the recording of the Lecture:
— Chairperson (Dr. Masaharu Nishimura)—

My name is Nishimura from the First Department of Medicine, Hokkaido University School of Medicine. It is quite an honor to be here to introduce Dr. Pieter van Maaren, who is currently the WHO officer working as the regional advisor for Stop TB in the WHO Western Pacific Region. Dr. Maaren, please allow me to introduce you further in Japanese for a few minutes.
(Introduction in Japanese)

Dr. van Maaren, now it’s your turn; you are allowed to speak for 45 to 50 minutes, followed by a couple of questions. Please go ahead.

— Dr. Pieter J. M. van Maaren—

Thank you very much, Mr. Chairperson, for your introduction. It is really my pleasure to be here with you to present about the tuberculosis situation in the Western Pacific Region, and what has happened in the past eight years in terms of progress in the fight against the disease. It is particularly important for me to be here in Japan because we have had so much support from the government of Japan and from Japanese experts in the past years, that the disease has been fought in the region by WHO and its partners. I would like to share with you a number of slides that highlight the progress that has been made, but also depict the challenges that we are still facing in the region.

First of all, I will take you through a little bit of history on the TB Special Project that was established in the Western Pacific Region. Secondly, I will go through the current situation in the region, showing you some data about TB, about TB-HIV, and about MDR-TB. Then I would like to conclude with the challenges ahead of us.

In 1999, the Western Pacific Regional Committee, which is WHO’s governing body in the region, declared a tuberculosis crisis, and it established the Stop TB Special Project. At that time, the Western Pacific Region had about one quarter of the global burden of tuberculosis. It saw close to 1,000 patients die every day from the disease, and 70% of the TB cases were in their most productive years — namely 15 to 54. The region was faced with an emerging TB-HIV and MDR epidemic, and at the time of declaring the crisis only 40% of the estimated cases were notified to the national TB programs, and only 60% of those notified cases were enrolled in DOTS — the WHO-recommended strategy at that time.

So the member states in his region asked WHO to do something about TB, and the regional director at that time, Dr. Shigeru Omi established the TB Special Project, which at that time developed a regional strategic plan to cover the first five years of the project leading up to the global TB targets in 2005. The project has set as its main target a 50% reduction in TB prevalence and mortality by 2010, which at that time was considered very ambitious. In order to do that it was thought that at least by 2005 the region needs to achieve 70% case detection and an 85% cure rate among all those patients notified with TB. We also aimed at 100% coverage of countries, with the DOTS strategy. A technically advisory group was established to advise WHO and the member states on how best to fight the disease in the years to come. Some of these technical advisory group members were actually experts from Japan and also other countries in the region. The TB Special Project supported countries in developing national 5-year plans, and also identified the financing gap and assisted the countries in mobilizing resources to cover this financing gap.

One of the important features of the strategy was to develop the human resource capacity in the region, to address the TB problem. Needless to say, as countries were unable to address the disease on their own, entirely, the development of partnerships and external support was very critical both at regional and national levels.

So what did this special TB project achieve in the region? Well, as you can see from this slide, in the first year the number of countries that actually implemented the DOTS strategy was very limited. In the year 2000, only 18 of the 36 countries in our region had established the DOTS strategy in some parts of their country. But you can see that within a couple of years the number of countries increased from 18 to 36 — a doubling of countries that implement the Stop TB strategy. And by 2005, the entire region was implementing the WHO-recommended DOTS strategy.

What about the targets that were set for 2005? As you can see here on this slide, especially the case detection targets and the DOTS coverage rapidly increased over the years. You see here the DOTS coverage, and this one — the lighter blue bars — depicts the case detection. One thing that the Western Pacific Region has always been doing very well is to successfully treat patients that are enrolled in the national TB programs’ DOTS strategy. As you can see, the cure rates or the treatment success rates have been maintained at 85 to 90%, or even higher in some countries, for a long, long time. I think that is very important for this region’s future TB control.

Having achieved the targets in 2005, it was obvious that the region needed to move forward in order to do something about reducing the prevalence and mortality due to TB in the region, by half. That was set as a target in the year 2000 by the WHO’s special project, but it was clear that in many countries
Abstract Since 2000, the incidence of tuberculosis (TB) has decreased gradually in Japan. However, more than 24 thousand TB patients were newly notified in 2008, and Japan is still classified as an "intermediate burden country". Early identification and treatment of those with latent tuberculosis infection (LTBI), having a high risk to progress to active TB, will decline TB incidence effectively and result in elimination of TB.

The only method for identifying LTBI has been the tuberculin skin test (TST), but TST may give false positive results in BCG-vaccinated people and in those exposed to nontuberculous mycobacteria. New diagnostic tests, called Interferon-Gamma Release Assays (IGRAs), have been recently introduced, in order to improve the specificity of TST. These include the QuantiFERON-TB (QFT) and the T-SPOT.TB tests. The former is available in two formats: QuantiFERON TB-Gold (QFT-G) and a newer version of QFT assay, so-called QuantiFERON-TB Gold In-Tube (QFT-GIT). The T-SPOT.TB test has not been approved yet in Japan.

The Japanese Society for Tuberculosis recommends that QFT tests should be used in all circumstances in which TST is used, including contact investigations and TB screening of healthcare workers. Although the QFT tests are widely utilized, the QFT tests have shown some limitations and problems: limited sensitivity of QFT-G, difficulty in interpretation of data in immuno-suppressed subjects and in children, lack of predictive value for future development of active TB, the inter-laboratory variability and quality assurance. In this symposium, we’ll discuss the above mentioned issues and their search for solutions.

1. Quality assurance of QFT and research on improvement of its sensitivity: Nobuyuki HARADA (Immunology Division, Department Mycobacterium Research and Reference, The Research Institute of Tuberculosis)

Since there were some discrepancies of QFT-G results of the same subjects among different laboratories, the quality assurance of QFT-G is thought to be important. We have carried out the quality assurances of QFT-G in 2007 and 2008. Although, approximately half of participants were categorized to be non-acceptable in the first quality assurance, many of those categorized to be non-acceptable became acceptable in the second one. From their results it is conceivable that the introduction of the quality assurance would be effective to improve the test skills. IGRAs including QFT-G are relatively new methods to diagnose TB infection, and the efforts to improve the performance of IGRAs are still under way. A new version of QFT-G (QFT-GIT) is more convenient in the first step of QFT (i.e. blood culture), and we have shown that QFT-GIT has the higher sensitivity than QFT-G. Another method, T-SPOT.TB based on ELISPOT method, has been shown to be more sensitive than QFT assays. A recent study has demonstrated that measurement of monokines, such as IP-10, along with interferon-gamma (IFN-γ), could improve the sensitivity of QFT to diagnose TB infection. More promising diagnostic methods could be developed in the near future.

2. Application of IGRAs to pediatric TB practice; its usefulness and limitation: Osamu TOKUNAGA, Takeshi MIYANOMAE (Department of Pediatrics, National Hospital Organization Minami-Kyoto National Hospital)

Our study group, named "The Research Group on the Performance of QuantiFERON-TB in Children", has collected data on the performance of QFT in pediatric patients with active TB diseases and TB contact examination cases, and also investigated the usefulness and limitation of QFT in the diagnosis of tuberculosis infection in children.

Although the sensitivity of QFT for pediatric patients with active TB diseases was about 90%, as high as for adult active TB cases, the sensitivity for the diagnosis of latent TB infection in children, especially both in infants and toddlers, was quite low.

Positive QFT results may be useful to confirm TB infection and diagnose active TB disease in children whose radiological findings are compatible with TB disease, but have no bacteriological evidence. On the other hand, negative QFT results should not be used to rule out TB infection in children who had a contact history with contagious TB patients.

3. Performance of QFT for diagnosis of latent TB infection in immunocompromised patients: Haruyuki ARIGA (National Hospital Organization Tokyo National Hospital)

The detection of LTBI in compromised hosts is essential for TB control, but T cell assay might be influenced by the degree of cell-mediated immunosuppression. However, the relationship between immunocompetence and specific IFN-γ response in QFT-G is uncertain. Our data indicated that the proportion of positive QFT assay results was found to be positively associated with lymphocyte count. Conversely, indeterminate assay results showed a negative relationship with lymphocyte count. Indeterminate result rates significantly increased in the categories with less than 700 lymphocyte cells/mm³. Most markedly, in severe lymphocytopenia with less than 300 cells/mm³, the fraction of test with indeterminate result was 37.8%. In patients with impaired cell-mediated immunity or
lymphocytopenia, QFT-G results should be interpreted carefully since false-negative proportion could be increased.

4. QFT-G as a tool for the detection of TB infection among contacts of TB cases: Takashi YOSHIYAMA (Fukujuji Hospital, JATA)

QFT-G has become available for the detection of TB infection among contacts of TB cases in Japan. We would like to discuss the limitations and problems of QFT-G and their solutions.

1) Sensitivity of QFT-G

The meta-analysis has shown the sensitivity of QFT-G to be approximately 80%. However, the reports on the sensitivity of QFT-G for the contacts of TB cases are limited in number, and we reviewed TB cases detected during a follow-up period after contact investigations by the classification of QFT-G results at the time of contact examinations. Among 39 cases detected during a follow-up period, 19 cases were negative with QFT-G at the time of contact examinations. All these cases with negative QFT-G at the time of contact examination were contacts of highly infectious (with high QFT-G positivity among contacts) TB cases.

2) Timing of application of QFT-G

I previously reported that among 8 contacts who became QFT-G positive during a follow-up period, all contacts became positive within 3 months of last contacts before diagnosis, except one pregnant woman, who became QFT-G positive 6 months after the last contacts with TB cases (QFT-G results at 2 months and 5 months were negative). A certain immunological status must be taken into consideration in the timing of its application.

5. Introduction of QFT-G for the nosocomial infection control for health care workers: Hidetoshi IGARI (Division of Control and Treatment of Infectious Diseases, Chiba University Hospital)

At Chiba University Hospital we have met some patients with active TB every year, partly due to their immunocompromised status. I presented a case of contact screening. QFT-G is a useful tool to detect a condition of LTBI in the health care workers. However there is scant evidence to support that the QFT current cut-off value is appropriate for the diagnosis of LTBI. Further study is needed to estimate its efficacy of QFT as an administrative tool for the infection control in health care facilities.

Key words: Interferon-gamma release assays, QFT, T-SPOT. TB, Latent tuberculosis infection, Contact investigation

1Yamagata Prefectural Institute of Public Health, 2Chiba Foundation for Health Promotion and Disease Prevention

Correspondence to: Tadayuki Ahiko, Yamagata Prefectural Institute of Public Health, 1-6-6, Tokamachi, Yamagata-shi, Yamagata 990-0031 Japan.
(E-mail: ahikot@pref.yamagata.jp)
IMMUNOSUPPRESSIVE THERAPY AND TUBERCULOSIS

Chairpersons: 1Kosho YOSHIKAWA and 2Shuichi YANO

Abstract Tuberculosis infection has been involved in host immunity. Diabetes, tumor-bearing patients, AIDS increases the risk of TB infection. And also patients with immunosuppressive therapy has a high risk of developing TB. Japan is a country of moderate TB prevalence yet. Considering the tuberculosis epidemic situation in Japan, risk of developing TB in patients receiving immunosuppressive therapy is high. Tuberculosis incidence state of immunosuppression is not typical, disseminated tuberculosis, and many extrapulmonary tuberculosis. X-ray picture of pulmonary tuberculosis is often different from typical. The tuberculosis incidence in patients receiving immunosuppressive therapy has a negative impact on the original disease. Early detection of tuberculosis, early treatment is important. But potential effectiveness of treatment for latent TB infection is clear. The patient at high risk of developing tuberculosis is required to make early treatment of latent TB infection.

Through this mini-symposium, member of the Japanese Society for Tuberculosis, along with other specialist physicians, confirmed that it is important that we have established a cooperative system of prevention and early diagnosis and early treatment of tuberculosis.
1. Revolution of treatment with biologics and management of tuberculosis in patients with rheumatoid arthritis: Yoshiya TANAKA, Katsunori SUZUKI, Kazuyoshi SAITO (The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan)

Rheumatoid arthritis (RA) is a systemic inflammatory disease that causes significant morbidity and mortality. TNF-alpha and IL-6 play a pivotal role in the pathological processes of RA through the accumulation of inflammatory cells as well as the self-perpetuation of inflammation, leading to cartilage and bone destruction. The combinational use of biologics targeting TNF-alpha and methotrexate (MTX) has revolutionized the treatment of RA, producing significant improvements in clinical, radiographic, and functional outcomes that were not previously observed. Post-marketing Surveillance which was conducted to evaluate the safety and effectiveness of infliximab and etanercept in Japan also clarified the safety of the TNF-inhibitors and risk factors involved in the severe adverse effects such as bacterial pneumonia and tuberculosis. Japan College of Rheumatology has recommended that tuberculosis screening before infliximab treatment and prophylactic antituberculosis treatment in the case of a suspected past history of tuberculosis should be performed for subsequent patients. As a consequence, prophylactic administration of antituberculosis drugs was increased, and the number of tuberculosis decreased. Accordingly, prophylaxis before starting biologics and appropriate treatment of severe adverse effects, including bacterial pneumonia, tuberculosis, pneumocystis pneumonia, by physicians have been emerging.

2. The influence of anti-TNF therapy on the incidence of tuberculosis (TB) in Japanese patients with rheumatoid arthritis (RA): Yasuhiko YOSHINAGA (Rheumatic Disease Center, Kurashiki Medical Center)

To evaluate the influence of anti-TNF therapy on the incidence of TB in Japanese patients with RA, we calculated the standardized incidence ratio (SIR) of TB from the clinical data on National Database of Rheumatic Disease by iR-net in Japan (NinJa) prospectively and compared with the SIR of TB from the data of the post-marketing survey of infliximab and etanercept in Japan. Among 7832 RA patients without anti-TNF therapy, 7 patients developed TB. The SIR of TB in RA patients without anti-TNF therapy was 3.98 (95%CI: 1.22–6.74). According to the post-marketing survey of infliximab in 5000 RA patients and etanercept in 13894 RA patients, 14 and 10 cases of TB had reported, the SIR of TB were 21.5 and 5.5, respectively. The incidence of TB in patients with RA was higher than general population, and was increased more by the anti-TNF therapy. We have to recognize the risk of TB when we start anti-TNF therapy to patients with RA.

3. Usefulness and limitations of QuantiFERON-TB Gold in Japanese rheumatoid arthritis patients for estimating latent tuberculosis infection: Shogo BANNO (Division of Rheumatology and Department of Medical Oncology and Immunology, Nagoya City University Graduate School of Medical Science)

We estimated the usefulness of QFT-2G compared with Tuberculin skin test or anti-TBGL antibody. We assessed the sensitivity and specificity of QFT-2G in Japanese rheumatoid arthritis patients with a past history of tuberculosis. Using ROC analysis, the AUC of QFT-2G was significant large. The QFT-G negativity does not exclude the possibility of TB infection because the sensitivity of the test in RA patients is low. The QFT-2G was not affected by the treatment of MTX, and the incidence of indeterminate result was low. It is impossible to confirm the presence of a past history of TB based on the results of QFT-2G alone, which limits its usefulness as a diagnostic tool for evaluation of LTBI.

4. Treatment of latent tuberculosis infection: Fumio YAMAGISHI (Department of Respiratory Diseases, National Hospital Organization Chiba-East National Hospital)

When using infliximab against rheumatoid arthritis, giving an active treatment for latent tuberculosis infection is recommended. That is because the onset of tuberculosis was reduced when a treatment for latent tuberculosis infection was given. In addition, the dosage and the period at administration of INH should follow the treatment standard of tuberculosis.

Key words: TNF α inhibitor, Rheumatoid arthritis, QuantiFERON-TB, Latent tuberculosis infection, INH

Correspondence to: Kosho Yoshikawa, Daido Hospital, 9 Hakusui-cho, Minami-ku, Nagoya-shi, Aichi 457–8511 Japan. (E-mail: yoshi@daidohp.or.jp)
PREVENTION OF TUBERCULOSIS IN MEDICALLY HIGH-RISKED PATIENTS

Chairpersons: 1Yuka SASAKI and 2Emiko TOYOTA

Abstract In the last ten years, prevalence rate of tuberculosis have been successfully decreasing under 20/100,000 in Japan and great advance has been brought about in this field; for instance IGRAs (QFT etc) and diagnosis of LTBI. The Japanese Society for Tuberculosis declared statement to perform more active prophylaxis in 2004 but we have still many of compromised patients with TB who could be prevented from getting active tuberculosis. With this symposium, we discussed how to work up actually on this problem in each clinical sites. We should alert physicians participating with medically high-risk pa
tients to recognize the risk of tuberculosis and to promote prevention. In addition, treatment of LTBI should be registered to Public Health Center.

1. A study how to prevent the appearance of active tuberculosis in patients with corticosteroids: Is the state of implementation of medication for LTBI proper?: Masahiro KAWASHIMA (National Hospital Organization Tokyo National Hospital)

The statement for treatment of LTBI by the Japanese Society for Tuberculosis in 2004 gives a concrete description about treatment of LTBI in patients with corticosteroids, but the state of implementation of medication for LTBI in patients with corticosteroids is unclear. 41 cases with active tuberculosis occurred during steroid therapy were studied and at least 15 cases were thought to have been indicative of LTBI retrospectively. Evaluation of risk for TB before and during steroid therapy were insufficient and medication for LTBI were unpracticed. On the other hand, 61 cases who started steroid therapy in our hospital were studied. Examination of sputum, chest-CT scanning, QFT or PPD were performed in most of all patients and then 17 cases were thought to be indication of treatment of LTBI but actually only followed. One patients progressed active TB. Promotion of treatment of LTBI for patients with corticosteroids may leads the decrease of active tuberculosis in those patients.

2. Tuberculosis among patients with rheumatoid arthritis: steroids to anti-TNFα: Tomoshibe MATSUMOTO (Osaka Prefectural Medical Center for Respiratory and Allergic Diseases)

Anti-TNFα agents made rheumatoid arthritis remittent effectively but occurrence of TB disease increase as more use of them. We already reported some of problems as follows: 1) diagnosis of LTBI, 2) method and duration for treatment for LTBI not sufficiently established, 3) difficult diagnosis of TB because of atypical figures, 4) paradoxical response, 5) to stop anti-TNFα agents make control of RA difficult for rebound, 6) not established treatment for RA after TB treatment, 7) less professional institutions to treat both RA and TB. Data of over 5000 cases who were treated by Remicade revealed TB did not occur among cases with INH prophylaxis. Furthermore there are possible use of anti-TNFα agent with antituberculous agents. Then it is recommended that screening for TB is necessary before starting anti-TNFα agent and prophylaxis by INH if possible LTBI. We should be careful not to misdiagnose worsening RA by sign of TB or other infectious diseases.

3. A consideration of the prevention from tuberculosis in hemodialysis patients: Takeshi KAWASAKI (National Hospital Organization Chiba-East National Hospital)

Hemodialysis patients have been increasing and aging in Japan, and they are in great danger of tuberculosis. When hemodialysis patients become tuberculosis, there is a possibility of infection to other patients, so the prevention, early detection and treatment for tuberculosis are very important. It became clear by questionnairees that many medical dialysis did not know about the recommendation of treatment for latent tuberculosis infection from the Japanese Society for Tuberculosis. It is important to examine and treat actively for latent tuberculosis infection of hemodialysis patients for the pre-
4. Prevention of active tuberculosis in HIV-infected persons: Akira FUJITA (Tokyo Metropolitan Fuchu Hospital)

The risk for active TB among HIV-infected persons is about from 20 to 200 times higher than among the general population. In Japan which is one of TB middle-burden countries and has BCG vaccination program, interferon-gamma release assay (IGRA) is useful rather than tuberculin skin test for the diagnosis of latent TB infection (LTBI). IGRA for the diagnosis of LTBI is recommended for HIV-infected persons with CD4 positive lymphocyte (CD4+) counts above 50 cells/μL, because our study suggested the sensitivity of QFT-G in the patients with CD4+ below 50 cells/μL may be low. Appropriate TB contact investigation for HIV-infected persons is important. For example, contacts who do not know their HIV-infection status should be advised to take HIV testing in the urban areas with high HIV prevalence rate. A possible correlation between non-adherence to highly active antiretroviral therapy and the risk of active TB development suggests that good adhere to antiretroviral drugs will be able to prevent active TB in HIV-infected patients.

5. Administration’s problems for latent tuberculosis infection (LTBI): Chika SHRAI (Public Health Center of Kobe City)

Clinician is obliged to report medication-required LTBI to Public Health Center, based on the Infectious Diseases Control Law. The Administration is unable to assess measures for TB without these reports. It is mandatory to own significance of LTBI reports and high-risk factors jointly by clinicians and public health facilities. It ought to acknowledge these procedures as essential tactics to eliminate TB through low spread.

Key words: Preventive therapy, Medically high risked patients, Treatment of LTBI, QFT

1National Hospital Organization Chiba-East National Hospital, 2National Hospital Organization Tokyo National Hospital

Correspondence to: Emiko Toyota, National Hospital Organization Tokyo National Hospital, 3–1–1, Takeoka, Kiyose-shi, Tokyo 204–8585 Japan. (E-mail:etoyota-in@tokyo-hosp.jp)
なっても死亡までの期間が不明の者は分子から除外した。高齢結核患者全体で、治癒開始時（治療なしの場合は診断時）から1年（365日）以内に死亡した者は26.4%（結核死8.4%、結核外死18.0%）であった。なお、3カ月（90日）以内に死亡した者でみると、死亡割合は14.8%（結核死6.4%、結核外死8.4%）であり死亡はかなり早い時期に起こっていた。結核か結核外死の区分に厳密な定義は囲むべきではないが、結核死亡は結核外死亡よりもより早期に起こっていた。特に早期の死亡は75歳以上では加齢とともに急激に拡大した。

（5）地域別高齢結核患者の割合（表2）

表2は都道府県・政令指定都市・東京都23区の合計別に高齢結核患者割合を算出し、割合の大きい順に並べたものである。2008年、新登録結核患者に占める65歳以上の患者割合が、最も大きな地域は山口県（76.2%), 次いで香川県、静岡県（共に75.6%）であった。一方、（2）で述べたように高齢結核患者に対しても、その年齢構成比は年々変化しており、単純に65歳以上の割合だけで高齢結核問題の地域差を把握することは難しい。たとえば85歳以上の割合もあわせて観察すると、85歳以上の結核患者の割合が最も大きな地域は、島根県（28.9%）、次いで隣接する鳥取県（26.8%）である。65歳以上の割合でみた地域とはかなり異なっていた。

おわりに

新規に登録される結核患者のうち高齢結核患者の占める割合は2002年に50%を超えた。そして、結核患者の高齢化は2008年に至るまでさらに進んでいる。高齢結核患者の特徴は、呼吸器症状以外の症状が多く、診断の遅れがやや長いため、治療開始の早期の死亡が多いことである。特に早期の死亡は75歳以上では加齢とともに急速に拡大する。このような状況を踏まえて、今後の高齢者結核対策や診療に有用な情報の提供に努めたいと考えている。

Information

TUBERCULOSIS ANNUAL REPORT 2008
— Series 4. Elderly TB —

Tuberculosis Surveillance Center, RIT, JATA

Abstract Although the tuberculosis (TB) incidence rate in Japan reached 19.4 per 100,000 in 2008, the rates among the elderly (65+yrs) were high, e.g. 29.5 of those aged 65−74 years, 64.2 of those aged 75−84 years and 97.3 of those aged 85 years and over. The trends of incidence rates of elderly TB differed by age group. Since 2000, those aged 65−84 years showed a relatively faster decrease, whereas those aged 85 years and over showed a slower decrease.

The proportion of those aged 65 years and over increased from 36.8% in 1987 to 56.7% in 2008, i.e. an increase of 1.5 times. Especially, the proportion of those aged 80 years and over increased greatly from 7.9% in 1987 to 26.6% in 2008, i.e. an increase of 3.4 times. The proportion of elderly TB differed greatly by prefecture.

According to epidemiological indicators of elderly TB, the proportion of extra-pulmonary TB was larger (24.9%) than that of younger TB patients aged 15−64 years (17.2%). The proportion of bacillary TB among elderly pulmonary TB patients was larger than that of younger pulmonary TB patients, but the proportion of cavitary TB among elderly pulmonary TB patients was smaller than that of younger pulmonary TB patients. The proportion of TB patients having only other symptoms without respiratory symptoms increased with age, e.g. 19.5% of those aged 65−74 years, 23.2% of those aged 75−84 years and 27.5% of those aged 85 and over.

Regarding the delay of case detection among elderly TB patients, the patient’s delay tended to be shorter but the doctor’s delay was longer. Although most TB patients including elderly TB patients were detected upon visiting a medical institution with some symptoms, in the case of elderly TB more patients were detected as outpatients or inpatients for a disease other than TB.

The prognosis of newly notified TB patients in 2007 was followed up till the end of 2008. Among TB patients aged 65 years and over, 26.4% died within one year and 14.8% died within 3 months. The proportion of death increased with age, and accelerating quickly particularly among those aged 75 years and over.

Key words: Tuberculosis, Incidence, Elderly, Age, Trend, Epidemiological indicator, Death, Prefecture

Research Institute of Tuberculosis, JATA

Correspondence to: Tuberculosis Surveillance Center, Research Institute of Tuberculosis, JATA, 3−1−24, Matsuyama, Kiyose-shi, Tokyo 204−8533 Japan.
(E-mail: tbsur@jata.or.jp)